About


The Atlanta Fed's macroblog provides commentary and analysis on economic topics including monetary policy, macroeconomic developments, inflation, labor economics, and financial issues.

Authors for macroblog are Dave Altig, John Robertson, and other Atlanta Fed economists and researchers.


December 04, 2018


Defining Job Switchers in the Wage Growth Tracker

Among the questions we receive about the Atlanta Fed's Wage Growth Tracker, one of the most frequent is about the construction of the job switcher and job stayer series. These series are derived from data in the Current Population Survey (CPS) and are intended to show how median wage growth differs for those who change their job from last year versus those who are in the same job. However, the monthly CPS does not actually ask if the person has the same job as a year ago.

So how to proceed? The CPS does contain information about the person's industry and occupation that we aggregate into consistent categories that can be compared to the person's industry/occupation reported a year earlier. If someone is in a different occupation or industry category, then we can reasonably infer that the person has changed jobs. To illustrate, for 2017, 18.8 percent of people in the Wage Growth Tracker data are in a different industry category than they were in 2016, and 28.6 percent are in a different occupation category. Of those who remain in the same industry, 23.9 percent changed occupation group, and of those in the same occupation group, 13.5 percent are in a different industry. However, this information doesn't allow us to identify all job switchers because being in the same industry and occupation group as a year earlier does not preclude having changed jobs.

Fortunately, the CPS also has questions based on who a person said their employer was in the prior month. It asks if that person still works there and if the employee's activities and job duties are the same as last month. If someone answers either of these questions in the negative, then it is likely that person is also in a different job than a year earlier. In 2017, 1.5 percent of people in the Wage Growth Tracker data said they have a different employer than in the prior month, and 0.9 percent report having different job responsibilities at the same employer.

Unfortunately, the dynamic structure of the CPS means that the responses to these "same employer/activity" questions can only potentially be matched with an individual's response in the prior two months, and not a year earlier. Moreover, some responses to those questions are blank, even for people whom we identify as being employed in the prior month. For those individuals, we simply don't know if they are in the same job as a month earlier. Of the non-null responses, the vast majority do not change job duties or employer from one month to the next. So if we assume the blank responses are randomly distributed among the employed population, it's reasonable to also treat the blanks as job stayers.

Previously, we had treated the blank "same employer/activity" observations as job switchers, but that approach almost certainly misclassified some actual job stayers as job switchers. Instead, we now define a job switcher as someone in the Wage Growth Tracker data who is in a different occupation or industry group than a year earlier, or someone who says no to either of the "same employer/activity" questions in the current or prior two months. We label everyone else a job stayer.

Does the definition matter for median wage growth? The following chart shows the annual time series of the difference between the median wage growth of job switchers and job stayers based on both the old and new definitions.

As you can see, the results are not qualitatively different. Job switchers have higher median wage growth during strong labor market conditions and lower growth during bad times. Not surprisingly, the gap in median wage growth is generally lower (more negative) using the old definition.

The next chart shows the annual time series of the share of job switchers in the Wage Growth Tracker data based on the new and old definitions. A caveat: we have been unable to construct occupation and industry groupings for 2003 that are completely consistent with the groupings used in 2002. This results in an erroneous spike in measured job switching for 2003.

Notice that the share of job switchers under the new definition peaked prior to the last two recessions, declined during the recessions, and then recovered. That share is now at a cyclical high. A discrete jump in the number of blank responses recorded for the "same employer/activity" questions in the CPS starting in 2009 masked this cyclicality under the old definition.

In about a week from now, the next update of the Wage Growth Tracker data will implement the new and improved definition of job switchers—I hope you'll check it out, and I'll be writing about it here as well.

December 4, 2018 in Employment , Labor Markets , Wage Growth | Permalink | Comments ( 0)

November 29, 2018


Cryptocurrency and Central Bank E-Money

The Atlanta Fed recently hosted a workshop, "Financial Stability Implications of New Technology," which was cosponsored by the Center for the Economic Analysis of Risk at Georgia State University. This macroblog post discusses the workshop's panel on cryptocurrency and central bank e-money. A companion Notes from the Vault post provides some highlights from the rest of the workshop.

The panel began with Douglas Elliot, a partner at Oliver Wyman, discussing some of the public policy issues associated with cryptoassets. Drawing on a recent paper he cowrote, Elliot observed that there are "at least four substantial market segments" that provide long-term support for cryptoassets:

  • libertarians and techno-anarchists who, for ideological reasons, want a currency without a government;
  • people who deeply distrust their government's economic management;
  • seekers of anonymity, who don't want their names associated with transactions and investments; and
  • technical users who find cryptoassets useful for some blockchain applications.

Besides these groups are the speculators and investors who hope to benefit from price appreciation of these assets.

Given the strong interest of these four groups, Elliot argues that cryptoassets are here to stay, but he also asserts that these assets raise public policy issues that regulation should address. Some issues, such as anti–money laundering, are being addressed, but all would benefit from a coordinated global approach. However, he observes that of the four long-term support groups, only the technical users are likely to favor such regulations.

Another paper, by University of Chicago professor Gina C. Pieters, analyzed the extent to which the cryptocurrency market is global using purchases of cryptocurrency by state-issued currencies. She finds that more than 90 percent of all cryptocurrency transactions occur using one of three currencies: the U.S. dollar, the South Korean won, and the Japanese yen. She further finds that the dominance of these three currencies cannot be explained by economic size, financial openness, or internet access. Pieters also observed that transactions involving bitcoin, the largest cryptocurrency by market value, do not necessarily represent a country's cryptomarket share.

Warren Weber, former Minneapolis Fed economist and a visiting scholar at the Atlanta Fed, discussed so-called "stable coins," one type of cryptocurrency. The value of many cryptocurrencies has fluctuated widely in recent years, with the price of one bitcoin soaring from under $6,000 to more than $19,000 and then plunging to just over $6,000—all within the period from October 2017 to October 2018. This extreme price volatility creates a significant impediment to Elliot's technical users who would like some method of buying blockchain services with a currency controlled by a blockchain. In an attempt to meet this demand, a number of "stable coins" have been issued or are under development.

Drawing on a preliminary paper, Weber discussed three types of stable coins. One type backs all of the currency it issues with holdings of a state-issued currency, such as the U.S. dollar. A potential weakness of these coins is that they incur operational costs that require payment. Weber observed that interest earnings might cover part of these expenses if the stable coin issuer holds the dollars in an interest-bearing asset. Additionally, charging redemption fees might offset some or all of the expense.

The other two alternatives involve the creation of cryptofinancial entities or crypto "central banks." Both of these approaches seek to adjust the quantity of the cryptocurrency outstanding to stabilize its price in another currency. However, Weber observed that both of these approaches are subject to the problem that the cryptocurrency could take on many values depending upon people's expectations. If people come to expect that a coin will lose its value, neither of these approaches can prevent the coin from becoming worthless.

The question of whether existing central banks should issue e-money was the topic of a presentation by Francisco Rivadeneyra of the Bank of Canada. Summarizing the results of his paper, Rivadeneyra observed that central banks could provide e-money that looks like a token or a more traditional account. The potential for central banks to offer widely available account-based services has long existed. However, after considering the tradeoffs, central banks have elected not to provide these accounts, and recent technological developments have not changed this calculus. However, new technologies may have changed the tradeoff for token-based systems. Many issues will need to be addressed first, though.

November 29, 2018 in Capital and Investment , Technology | Permalink | Comments ( 1)

November 16, 2018


Polarization through the Prism of the Wage Growth Tracker (Take Two)

In a previous macroblog post, I thought I had discovered an interesting differential between the wage growth of middle-wage earners and that of low/high-paid workers. It turns out that what I actually discovered is that my programming skills could be improved upon. The following is an update to the post, written after correcting the coding error. Although there is no obvious wage growth polarization story, the wages of low-wage workers are currently rising at a faster median rate than for other workers.

Updated Post:

One of the most frequent questions we receive about the Atlanta Fed's Wage Growth Tracker (the median of year-over-year percent changes in individuals' hourly wage) is about the relationship between wage level and wage growth. For example, do high-wage earners also tend to experience greater wage growth?

When looking at wage growth by wage level, whether you use the prior or current wage level as the reference point matters—a lot. If we looked at wage growth categorized by the prior year's wages, we would find higher median wage growth for low-wage earners than for high-wage earners. This is because some workers who earned low wages last year earn middle or high wages this year, and some of last year's high-wage workers earn middle or low wages this year. If we instead categorized people based on current-year wages, we would see exactly the opposite: lower median wage growth for low-wage workers than for high-wage workers (see here for more discussion).

One way to lessen this wage-level base effect is to categorize an individual's wage growth according to their average wage across the two years. The following chart shows this categorization for the 2016–17 wage growth distribution of all workers in the Wage Growth Tracker data. (Note that since 1997, the annual salary for people whose earnings are only reported on a weekly basis is top-coded at $150,000 a year—these masked observations are excluded from the analysis). In the chart, the first quartile depicts the lowest-paid 25 percent of workers based on their average 2016–17 hourly wage, and so on. The center line of the box for each quartile is the median of that group's wage growth distribution, and the lower and upper boundaries of the box are the 25th and 75th percentiles, respectively. The outer lines are the thresholds for outlier observations (see here for the calculation.)

Macroblog - November 16, 2018 - chart 1: Distribution of Growth in Hourly Wage

The chart shows that the wage growth distribution across the average-wage quartiles does, in fact, differ. In particular, the median wage growth for the lowest-paid workers is higher than the median for other types of workers. The median wage growth from 2016 to 2017 for the lowest quartile is 3.8 percent, 3.0 percent for the second quartile, and 3.2 percent for the third and fourth quartiles.

However, the pattern of relatively higher median wage growth for low-wage workers is not uniform over time. This difference is apparent in the following chart, which plots median wage growth over time for each average-wage quartile.

Macroblog - November 16, 2018 - chart 2: Median Wage Growth by Average-Wage Quartile

As the chart shows, median wage growth of low-wage workers (the green line, representing the first quartile) currently exceeds that of higher-wage workers, but it was below the median for higher-paid workers in the wake of the Great Recession. This pattern is consistent with the both the severity of the recession and what we have been hearing more recently about emerging shortages of low-skilled workers. It also appears that the median wage growth of the highest-paid workers (the blue line, representing the fourth quartile) slows by a bit less than that of other workers during downturns but is otherwise not much different than for workers in the middle of the wage distribution.

So, relative to the incorrect charts I had in the previous version of this post, there is no obvious wage growth polarization story here. The wages of low-wage workers are currently rising at a faster median rate than for other workers, and these other workers are experiencing broadly similar median wage growth.

November 16, 2018 in Employment , Labor Markets , Wage Growth | Permalink | Comments ( 0)

November 14, 2018


Polarization through the Prism of the Wage Growth Tracker

One of the most frequent questions we receive about the Atlanta Fed's Wage Growth Tracker (the median of year-over-year percent changes in individuals' hourly wage) is about the relationship between wage level and wage growth. For example, do high-wage earners also tend to experience greater wage growth?

An earlier macroblog post explored this question. Unfortunately, answering it is not as easy as it might appear. When looking at wage growth by wage level, whether you use the prior or current wage level as the reference point matters—a lot. If we looked at wage growth categorized by the prior year's wages, we would find higher median wage growth for low-wage earners than for high-wage earners. This is because some workers who earned low wages last year earn middle or high wages this year, and some of last year's high-wage workers earn middle or low wages this year. If we instead categorized people based on current-year wages, we would see exactly the opposite: lower median wage growth for low-wage workers than for high-wage workers.

One way to lessen this wage-level base effect is to categorize an individual's wage growth according to their average wage across the two years. The following chart shows this categorization for the 2016 to 2017 wage growth distribution of all workers in the Wage Growth Tracker data. In the chart, the first quartile (labeled <$13.8) depicts the lowest-paid 25 percent of workers based on their average 2016–17 hourly wage, and so on. The center line of the box for each quartile is the median of that group's wage growth distribution, and the lower and upper boundaries of the box are the 25th and 75th percentiles, respectively. The outer lines are the thresholds for outlier observations (see here for the calculation.)

The chart shows that the wage growth distribution across the average-wage quartiles does, in fact, differ. For example, the median wage growth from 2016 to 2017 for the lowest quartile is 3.9 percent, 1.6 percent for the second quartile, 1.9 percent for the third quartile, and 3.2 percent for the top quartile.

The pattern of higher median wage growth in the lower and upper quartiles, compared with the middle part of the wage distribution, is reasonably uniform over time.  However, there is a cyclical difference between the median wage growth of high- and low-wage earners. This difference is apparent in the following chart, which plots median wage growth over time for each average-wage quartile.

As the chart shows, median wage growth of low-wage workers (the green line, first quartile) currently exceeds that of high-wage workers (the blue line, fourth quartile), but it was below the median for high-wage workers in the wake of the Great Recession. This pattern is consistent with the both the severity of the recession and what we have been hearing more recently about emerging shortages of low-skilled workers. In contrast, median wage growth for workers in the middle of the wage distribution (the orange and purple lines) remains lower than for either high- or low-wage workers. Overall, these findings reinforce the idea of polarization, where the demand for workers has generally grown more in the tails of the skill/wage distribution than in the middle.

November 14, 2018 in Employment , Labor Markets , Wage Growth | Permalink | Comments ( 0)

Google Search



Recent Posts


Archives


Categories


Powered by TypePad