About


The Atlanta Fed's macroblog provides commentary and analysis on economic topics including monetary policy, macroeconomic developments, inflation, labor economics, and financial issues.

Authors for macroblog are Dave Altig, John Robertson, and other Atlanta Fed economists and researchers.


June 01, 2018


Part-Time Workers Are Less Likely to Get a Pay Raise

A recent FEDS Notes article summarized some interesting findings from the Board of Governors' 2017 Survey of Household Economics and Decisionmaking. One set of responses that caught my eye explored the connection between part-time employment and pay raises. The report estimates that about 70 percent of people working part-time did not get a pay increase over the past year (their pay stayed the same or went down). In contrast, only about 40 percent of full-time workers had no increase in pay.

This pattern is broadly consistent with what we see in the Atlanta Fed's Wage Growth Tracker data. As the following chart indicates, the population of part-time workers (who were also employed a year earlier) is generally less likely to get an increase in the hourly rate of pay than their full-time counterparts. Median wage growth for part-time workers has been lower than for full-time workers since 1998.

Wage Growth Tracker

This wage growth premium for full-time work is partly accounted for by the fact that the typical part-time and full-time worker are different along several dimensions. For example, a part-time worker is more likely to have a relatively low-skilled job, and wage growth tends to be lower for workers in low-skilled jobs.

As the chart shows, the wage growth gap widened considerably in the wake of the Great Recession. The share of workers who are in part-time jobs because of slack business conditions increased across industries and occupation skill levels, and median part-time wage growth ground to a halt.

While part-time wage growth has improved since then, the wage growth gap is still larger than it used to be. This larger gap appears to be attributable to a rise in the share of part-time employment in low-skilled jobs since the recession. In particular, relative to 2007, the share of part-time workers in the Wage Growth Tracker data in low-skilled jobs has increased by about 3 percentage points, whereas the share of full-time workers in low-skilled jobs has remained essentially unchanged. Note that what is happening here is that more part-time jobs are low skilled than before, and not the other way around. Low-skilled jobs are about as likely to be part-time now as they were before the recession.

How does this shift affect an assessment of the overall tightness of today's labor market? Looking at the chart, the answer is probably “not much.” As measured by the Wage Growth Tracker, median wage growth for both full-time and part-time workers has not been accelerating recently. If the labor market were very tight, then this is not what we would expect to see. The modest rise in average hourly earnings in the June 1 labor report to 2.7 percent year over year, even as the unemployment rate declined to an 18-year low, seems consistent with that view.  A reading on the Wage Growth Tracker for May should be available in about a week.

June 1, 2018 in Data Releases, Economic conditions, Employment, Labor Markets, Wage Growth | Permalink

Comments

Post a comment

Comments are moderated and will not appear until the moderator has approved them.

If you have a TypeKey or TypePad account, please Sign in

April 18, 2018


Hitting a Cyclical High: The Wage Growth Premium from Changing Jobs

The Atlanta Fed's Wage Growth Tracker rose 3.3 percent in March. While this increase is up from 2.9 percent in February, the 12-month average remained at 3.2 percent, a bit lower than the 3.5 percent average we observed a year earlier. The absence of upward momentum in the overall Tracker may be a signal that the labor market still has some head room, as suggested by participants at the last Federal Open market Committee (FOMC) meeting, who noted this in the meeting:

Regarding wage growth at the national level, several participants noted a modest increase, but most still described the pace of wage gains as moderate; a few participants cited this fact as suggesting that there was room for the labor market to strengthen somewhat further.

Although wages haven't been rising faster for the median individual, they have been for those who switch jobs. This distinction is important because the wage growth of job-switchers tends to be a better cyclical indicator than overall wage growth. In particular, the median wage growth of people who change industry or occupation tends to rise more rapidly as the labor market tightens. To illustrate, the orange line in the following chart shows the median 12-month wage growth for workers in the Wage Growth Tracker data who change industry (across manufacturing, construction, retail, etc.), and the green line depicts the wage growth of those who remained in the same industry.

As the chart indicates, changing industry when unemployment is high tends to result in a wage growth penalty relative to those who remain employed in the same industry. But when the unemployment rate is low, voluntary quits rise and workers who change industries tend to experience higher wage growth than those who stay.

Currently, the wage growth premium associated with switching employment to a different industry is around 1.5 percentage points and growing. For those who are tempted to infer that the softness in the Wage Growth Tracker might signal an impending labor market slowdown, the wage growth performance for those changing jobs suggests the opposite: the labor market is continuing to gradually tighten.

April 18, 2018 in Data Releases, Employment, Labor Markets, Wage Growth | Permalink

Comments

Post a comment

Comments are moderated and will not appear until the moderator has approved them.

If you have a TypeKey or TypePad account, please Sign in

March 06, 2018


A First Look at Employment

One Friday morning each month at 8:30 is always an exciting time here at the Atlanta Fed. Why, you might ask? Because that's when the U.S. Bureau of Labor Statistics (BLS) issues the newest employment and labor force statistics from the Employment Situation Summary. Just after the release, Atlanta Fed analysts compile a "first look" report based on the latest numbers. We have found this initial view to be a very useful glimpse into the broad health of the national labor market.

Because we find this report useful, we thought you might also find it of interest. To that end, we have added the Labor Report First Look tool to our website, and we'll strive to post updated data soon after the release of the BLS's Employment Situation Report. Our Labor Report First Look includes key data for the month and changes over time from both the payroll and household surveys, presented as tables and charts. 

Additionally, we will also use the bureau's data to create other indicators included in the Labor Report First Look. For example, one of these is a depiction of changes in payroll employment by industry, in which we rank industry employment changes by average hourly pay levels. This tool allows us to see if payrolls are gaining or losing higher- or lower-paying jobs, as the following chart shows.

But wait, there's more! We will also report information on the so-called job finding rate—an estimate of the share of unemployed last month who are employed this month—and a broad measure of labor underutilization. Our underutilization concept is related to another statistic we created called Z-Pop, computed as the share of the population who are either unemployed or underemployed (working part-time hours but wanting full-time work) or who say they currently want a job but are not actively looking. We have found this to be a useful supplement to the BLS's employment-to-population ratio (see the chart).

The Labor Report First Look tool also allows you to dig a bit deeper into Atlanta Fed labor market analysis via links to our Human Capital Data & Tools (which includes the Wage Growth Tracker and Labor Force Dynamics web pages) and links to some of our blog posts on labor market developments and related research. (In fact, it's easy to stay informed of all Labor Report First Look updates by subscribing to our RSS feed or following the Atlanta Fed on Twitter.

We hope you'll look for the inaugural Labor Report First Look next Friday morning...we know you'll be as excited as we will!

March 6, 2018 in Economic conditions, Employment, Labor Markets | Permalink

Comments

Post a comment

Comments are moderated and will not appear until the moderator has approved them.

If you have a TypeKey or TypePad account, please Sign in

February 28, 2018


Weighting the Wage Growth Tracker

The Atlanta Fed's Wage Growth Tracker (WGT) has shown its usefulness as an indicator of labor market conditions, producing a better-fitting Phillips curve than other measures of wage growth. So we were understandably surprised to see the WGT decline from 3.5 percent in 2016 to 3.2 percent in 2017, even as the unemployment rate moved lower from 4.9 to 4.4 percent.

This unexpected disconnect between the WGT and the unemployment rate naturally led us to wonder if it was a consequence of the way the WGT is constructed. Essentially, the WGT is the median of an unweighted sample of individual wage growth observations. This sample is quite large, but it does not perfectly represent the population of wage and salary earners.

Importantly, the WGT sample has too few young workers, because young workers are much more likely to be in and out of employment and hence less likely to have a wage observation in both the current and prior years. To examine the effect of this underrepresentation, we recomputed median wage growth after weighting the WGT sample to be consistent with the distribution of demographic and job characteristics of the workforce in each year. It turns out that this adjustment is important when the labor market is tight.

During periods of low unemployment, young people who stay employed tend to experience larger proportionate wage bumps than older workers. In 2017, for example, the weighted median is 40 basis points higher than the unweighted version. However, both the unweighted version (the gray line in the chart below) and the weighted version of the WGT (the blue line) declined by a similar amount from 2016 to 2017. The decline in the weighted median is also statistically significant (the p-value for the test is 0.07, indicating that the observed difference is unlikely to be due to chance).

Another issue that could affect comparisons of wage growth over time is the changing demographic characteristics of the workforce. In particular, we know that workers' wage growth tends to slow as they approach retirement age, and the fraction of older workers has increased markedly in recent years. To examine this trend, we re-computed the weighted median, but fixed the demographic and job characteristics of the workforce so they would look as they did in 1997.

Our 1997-fixed version shows that median wage growth in recent years would be a bit higher if not for the aging of the workforce (the dashed orange line in the chart below). Moreover, this demographic shift appears to explain some of the slowing in median wage growth from 2016 to 2017. Whereas the 1997-fixed median also slows over the year, the difference is not statistically significant (a test of the null hypothesis of no change in the 1997-fixed weighted median between 2016 and 2017 yielded a p-value of 0.38).

Long story short, our analysis suggests that median wage growth of the population of wage and salary earners is currently higher than the WGT would indicate, reflecting the strong wage gains young workers experience in a tight labor market. Moreover, the increasing share of older workers is acting to restrain median wage growth. Although the decline in median wage growth from 2016 to 2017 appears to be partly the result of the aging workforce, there still may be more to it than just that, and so we will continue to monitor the WGT and related measures closely in 2018 for signs of a pickup. We also want to note that with the release of the February wage data in mid-March, we will make a monthly version of the weighted WGT available.

 

February 28, 2018 in Data Releases, Employment, Labor Markets, Wage Growth | Permalink

Comments

Post a comment

Comments are moderated and will not appear until the moderator has approved them.

If you have a TypeKey or TypePad account, please Sign in

January 18, 2018


How Low Is the Unemployment Rate, Really?

In 2017, the unemployment rate averaged 4.4 percent. That's quite low on a historical basis. In fact, it's the lowest level since 2000, when unemployment averaged 4.0 percent. But does that mean that the labor market is only 0.4 percentage points away from being as strong as it was in 2000? Probably not. Let's talk about why.

As observed by economist George Perry in 1970, although movement in the aggregate unemployment rate is mostly the result of changes in unemployment rates within demographic groups, demographic shifts can also change the overall unemployment rate even if unemployment within demographic groups has not changed. Adjusting for demographic changes makes for a better apples-to-apples comparison of unemployment today with past rates.

Three large demographic shifts underway since the early 2000s are the rise in the average age and educational attainment of the labor force, and the decline in the share who are white and non-Hispanic. These changes are potentially important because older workers and those with more education have lower rates of unemployment across age and education groups respectively, and white non-Hispanics tend to have lower rates of unemployment than other ethnicities.

The following chart shows the results of a demographic adjustment that jointly controls for year-to-year changes in two sex, three education, four race/ethnicity, and six age labor force groups, (see here for more details). Relative to the year 2000, the unemployment rate in 2017 is about 0.6 percentage points lower than it would have been otherwise simply because the demographic composition of the labor force has changed (depicted by the blue line in the chart).

In other words, even though the 2017 unemployment rate is only 0.4 percentage points higher than in 2000, the demographically adjusted unemployment rate (the green line in the chart) is 1.0 percentage points higher. In terms of unemployment, after adjusting for changes in the composition of the labor force, we are not as close to the 2000 level as you might have thought.

The demographic discrepancy is even larger for the broader U6 measure of unemployment, which includes marginally attached and involuntarily part-time workers. The 2017 demographically adjusted U6 rate is 2.5 percentage points higher than in 2000, whereas the unadjusted U6 rate is only 1.5 percentage points higher. That is, on a demographically adjusted basis, the economy had an even larger share of marginally attached and involuntarily part-time workers in 2017 than in 2000.

The point here is that when comparing unemployment rates over long periods, it's advisable to use a measure that is reasonably insulated from demographic changes. However, you should also keep in mind that demographics are only one of several factors that can cause fluctuation. Changes in labor market and social policies, the mix of industries, as well as changes in the technology of how people find work can also result in changes to how labor markets function. This is one reason why estimates of the so-called natural rate of unemployment are quite uncertain and subject to revision. For example, participants at the December 2012 Federal Open Market Committee meeting had estimates for the unemployment rate that would prevail over the longer run ranging from 5.2 to 6.0 percent. At the December 2017 meeting, the range of estimates was almost a whole percentage point lower at 4.3 to 5.0 percent.

January 18, 2018 in Business Cycles, Economic conditions, Labor Markets, Unemployment | Permalink

Comments

Post a comment

Comments are moderated and will not appear until the moderator has approved them.

If you have a TypeKey or TypePad account, please Sign in

November 15, 2017


Labor Supply Constraints and Health Problems in Rural America

A recent research study by Alison Weingarden at the Federal Reserve's Board of Governors found that wages for relatively low-skilled workers in nonmetropolitan areas of the country have been growing more rapidly than those in metropolitan areas. In a talk yesterday in Montgomery, Alabama, Atlanta Fed President Raphael Bostic provided some evidence that differences in labor supply resulting from disability and illness may be behind this shrinking urban wage premium.

For prime-age workers (those between 25 and 54 years old), the dynamics of labor force participation (LFP) differ widely between metropolitan and nonmetropolitan areas. (These data define a metropolitan statistical area, or MSA). The LFP rate in MSAs declined by about 1.1 percentage points between 2007 and 2017 versus a 3.3 percentage point decline in non-MSA areas.

The disparity is also evident within education groups. For those without a college degree, the MSA LFP rate is down 2.6 percentage points, versus 5.0 percentage points in non-MSAs. For those with a college degree, the MSA LFP rate is down 0.7 percentage points, versus a decline of 2.5 percentage points for college graduates in non-MSAs. Moreover, although LFP rates in MSAs have shown signs of recovery in the last couple of years, this is not happening in non-MSAs.

A recent macroblog post by my colleague Ellyn Terry and the Atlanta Fed's updated Labor Force Dynamics web page have shown that the decline in prime-age LFP is partly a story of nonparticipation resulting from a rise in health and disability problems that limit the ability to work. This rise is occurring even as the population is gradually becoming more educated. (Better health outcomes generally accompany increased educational attainment.)

The following chart explores the role of disability/illness in explaining the relatively larger decline in non-MSA LFP. It breaks the cumulative change in the LFP rates since 2007 into the part attributable to demographic trends and the part attributable to behavioral or cyclical changes within demographic groups.

The demographic changes—and especially the increased share of the population with a college degree—has put mild upward pressure on the prime-age LFP rate for both the MSA and non-MSA population. Controlling for the contribution from these demographic trends, increased nonparticipation because of poor health and disability pulled down the LFP rate in MSAs by 0.8 percentage points and lowered the rate in non-MSAs by 2.0 percentage points over the past decade. For those without a college degree, disability/illness accounted for about 1.2 percentage points of the 2.6 percentage point decline in the MSA participation rate, and it accounted for 2.6 percentage points of the 5.0 percentage point decline in the non-MSA participation rate.

Taken together with evidence from business surveys and anecdotal reports about hiring difficulties, it appears that the non-MSA labor market is relatively tight. The greater inward shift of the rural supply of labor is showing through to wage costs, and especially for rural jobs that require less education.

Although the move to higher wages is welcome news for those with a job, it also raises troubling questions about why labor force nonparticipation because of disability and illness has increased so much in the first place—especially among those with less education living in nonmetropolitan areas of the country.

It is clear that the health problems for rural communities have been intensifying. Several interrelated factors have likely contributed to this worsening trend, including poverty, deeply rooted cultural and social norms, and the characteristics of rural jobs, as well as geographic barriers and shortages of healthcare providers that have limited access to care. This complex set of circumstances suggests that finding effective solutions could prove difficult.

November 15, 2017 in Health Care, Labor Markets, Unemployment | Permalink

Comments

Post a comment

Comments are moderated and will not appear until the moderator has approved them.

If you have a TypeKey or TypePad account, please Sign in

August 30, 2017


Is Poor Health Hindering Economic Growth?

It is well known that poor health is bad for an individual's income, partially because it can lower the propensity to participate in the labor market. In fact, 5.4 percent of prime-age individuals (those 25–54 years old) reported being too sick or disabled to work in the second quarter of 2017. This is the most commonly cited reason prime-age men do not want a job, and for prime-age women, it is the second most often cited reason behind family responsibilities (see the chart). (Throughout this article, I use the measure "not wanting a job because of poor health or disability" as a proxy for serious health problems.)

In addition to being prevalent, the share of the prime-age population citing poor health or disability as the main reason for not wanting a job has increased significantly during the past two decades and tends to be higher among those with less education (see the chart).

Yet by some standards, the health of Americans is improving. For example, compared to two decades ago the average American is living two years longer, and the likelihood of dying from cancer or cardiovascular disease has fallen. These specific outcomes, however, may have more to do with improvements in the treatment of chronic disease (and the resulting reduction in mortality rates) than improvements in the incidence of health problems.

Another puzzle—which is perhaps also a clue—is the considerable variation across states in the rates of being too sick or disabled to work. For example, people living in Mississippi, Alabama, Kentucky, or West Virginia in 2016 were more than three times likelier to indicate being too sick or disabled to work than residents of Utah, North Dakota, Iowa, or Minnesota (see the maps below).

This cross-state variation is useful because it allows state-by-state comparisons of the prevalence of specific health problems. Among a list of more than 30 health indicators, the two factors that most correlate with the share of a state's population too sick or disabled to work were high blood pressure (a correlation of 0.86) and diabetes (a correlation of 0.83). Both of these conditions are associated with risk factors such as family history, race, inactivity, poor diet, and obesity. Both of these health issues have increased significantly on a national basis in recent years.

So how might poor health hinder economic growth? Health factors account for a significant part of the decline in labor force participation since at least the late 1990s. After controlling for demographic changes, the share of people too sick or disabled to work is about 1.6 percentage points higher today than it was two decades ago (see the interactive charts on our website). Other things equal, if this trend reversed itself during the next year, it could increase the workforce by up to 4 million people, and add around 2.6 percentage points to gross domestic product (calculated using our Labor Market Sliders).

Of course, such a sudden and large reversal in health is highly unlikely. Nonetheless, significant improvements to the health of the working-age population would help lessen the drag on growth of the labor supply coming from an aging population. Public policy efforts centered on both prevention and treatment of work-impeding health conditions could play an important role in bolstering the nation's workforce.


August 30, 2017 in Education, Health Care, Labor Markets | Permalink

Comments

Post a comment

Comments are moderated and will not appear until the moderator has approved them.

If you have a TypeKey or TypePad account, please Sign in

July 12, 2017


An Update on Labor Force Participation

With the unemployment rate essentially back to prerecession levels, economists have been paying increased attention to the labor force participation rate (LFPR). Many economists, including those at the Congressional Budget Office , believe untapped resources remain on the sidelines of the labor market.

What exactly does "on the sidelines" entail? Discouraged workers are only a small part of the story. To help unravel the rest of the mystery behind the elevated share of people not participating, we at the Atlanta Fed use the microdata from the Current Population Survey to code the activities of persons not in the labor force. We then calculate how changes in each activity contribute to the total change in the LFPR.

The chart below depicts the drivers of the change in the LFPR from the first quarter of 2016 to the first quarter of 2017. (The interactive tool on our website allows you to make comparisons across gender, age group, and time.) The LFPR rose just slightly (about 0.06 percentage points). However, that small change was the net result of much larger countervailing forces. Other things equal, demographic changes during the year would have lowered the LFPR by around 0.14 percentage points. The aging of the population put significant downward pressure on the LFPR (pushing it down 0.24 percentage points), but a more educated workforce helped push up the LFPR (0.10 percentage points). If the age and education mix of the population had not changed, the LFP rate would have risen by about 0.19 percentage points (see the chart).

The following chart further breaks down the behavioral and cyclical components at work. After controlling for shifts in the demographic mix of the population during the year, the largest contributing factor was a decline in the rate of nonparticipation because of family responsibilities.

This is a particularly important explanation for prime-age women (defined as women between 25 and 54 years of age). A smaller share of prime-age women who say they are busy with home and/or family responsibilities accounts for about half of the 0.62 percentage point increase in LFPR that occurred between the first quarter of 2016 and the first quarter of 2017 (see the chart).

To examine factors affecting prime-age men's participation or to learn more about the cyclical and structural factors behind each reason, visit our website.


July 12, 2017 in Economic conditions, Employment, Labor Markets, Wage Growth | Permalink

Comments

Post a comment

Comments are moderated and will not appear until the moderator has approved them.

If you have a TypeKey or TypePad account, please Sign in

July 11, 2017


Another Look at the Wage Growth Tracker's Cyclicality

Though Friday's employment report showed that payroll employment rose by a robust 222,000 jobs in June—much higher than most forecasts—enthusiasm for the news was tempered somewhat by average hourly wages coming in below expectations. Is the (ongoing) relatively tepid pace of wage growth a cause for concern? Perhaps, but the ups and downs of average wages over the course of the business cycle—the pattern of expansion-recession-expansion that typifies modern economies—are a bit more complicated than they may seem.

The year-over-the-year growth in the average wage level that we see in the official employment conditions report is influenced by wages paid to people who were employed either today or a year earlier. That is, the wages of those who remained employed (EE) as well as those who entered employment (NE) and those who exited employment (EN). Because the individuals in these groups may command different wages on average—due to experience, for example—the usual wage growth measures confound the effects of changes in the average wage of people with particular types of year-over-year employment histories. In that sense, the usual wage growth statistic may not exactly be comparing apples to apples.

Research by, for example, Solon, Barsky, and Parker 1992 and Daly and Hobjin 2016  explores the effect of the changing composition of workers over time using microdata on individuals with known employment histories. They show that people who enter and exit employment have a lower average wage than those who stay employed over the year and that the net exit/entry flow increases when the labor market is weak—more people leave employment, and fewer people enter it. As a result, the disproportionate increase in the net flow of workers with a lower-than-average wage serves to boost the overall average wage level during recessions.

One approach to making a more apples-to-apples comparison of average wages over time is to strip out the effect that comes from the change in the share of workers who stay employed and who entered or exited employment. Technically speaking, the composition-adjusted wage growth series is determined by adding the change in average log hourly wage within the EE group and the same change within the EN/NE group, while holding constant the respective average population shares in each group. The chart below illustrates the result of this adjustment.

I should note that the change in the average wage uses data only for people who have a known employment status a year earlier, which results in a wage growth series that is somewhat higher than the change in the average wage of all employed people, some of whom have an unknown employment history.

As the chart shows, relative to the adjusted series (the green line), growth in overall average wages (the orange line) stayed up longer during the last recession, then fell by less, and was slower to adjust to improving labor market conditions (falling unemployment) after the recession ended. The correlation between the overall growth in average wages and the inverse of the unemployment rate is 0.72, and this correlation rises to 0.79 using the adjusted wage growth series.

An alternative approach to making a more apples-to-apples comparison of average wages is to ignore the entry/exit margin and only look at people who are employed both today and a year earlier (EE). The Wage Growth Tracker (computed here as the difference in average log hourly wage) does that for the subset of EE people who have an actual wage record in both periods (no earnings information is collected for self-employed workers in the Current Population Survey). The following chart compares this version of the Wage Growth Tracker with the growth in overall average wages.

The Atlanta Fed's Wage Growth Tracker uses the median change in wages rather than the average change, but it displays very similar dynamics.

As the chart shows, the growth in average wages for those who remain in wage and salary jobs (the red line) is a bit smoother than growth in overall average wages (the orange line) and moves more in sync with the inverse of the unemployment rate (the correlation is 0.85). However, its level is quite a bit higher than growth in overall average wages. This disparity is because the average wage for those entering employment is less than for those exiting, so the change in average wages along the entry/exit margin is always negative.

But enough math—let's put this all together. If you want a measure of wage growth that reflects relative labor market strength, then looking at wage growth after controlling for entry/exit composition effects is probably a good idea. The Wage Growth Tracker seems to do that job reasonably well. However, the Wage Growth Tracker almost certainly overstates the growth in per hour wage costs that employers are facing. Most importantly, it ignores the employment exit/entry margin. Hence, one should avoid interpreting the Wage Growth Tracker as a direct measure of growth in labor costs—a point also discussed in this recent Atlanta Fed podcast episode . The next reading from the Wage Growth Tracker will be available when the Census Bureau releases the Current Population Survey microdata, usually within a couple of weeks of the national employment report. Given that the unemployment rate has remained relatively low recently, I would expect the Wage Growth Tracker to stay at a relatively high level. Check back here then and we'll see what we learn.

July 11, 2017 in Data Releases, Employment, Labor Markets, Wage Growth | Permalink

Comments

Great post! Looking forward to your discussion on Wages, Earnings, & Compensation at the NABE Economic Measurement Seminar next week!

Posted by: Chris Herdelin | July 11, 2017 at 02:30 PM

Very insightful research. Have you analyze the wage of NE and EN? I am curious if those exit the employment (for age 55+) are having higher wages than those maintain employment in that age group as they might earn enough to retire. If you have data in that direction, would you mind sharing with us?

Thanks much.

Posted by: Longying Zhao | July 12, 2017 at 12:04 PM

Post a comment

Comments are moderated and will not appear until the moderator has approved them.

If you have a TypeKey or TypePad account, please Sign in

May 05, 2017


Slide into the Economic Driver's Seat with the Labor Market Sliders

The Atlanta Fed has just launched the Labor Market Sliders, a tool to help explore simple "what if" questions using actual data on employment, the unemployment rate, labor force participation, gross domestic product (GDP) growth, and labor productivity (GDP per worker).

We modeled the Labor Market Sliders after the popular Atlanta Fed Jobs Calculator. In particular, the sliders take the rate of labor productivity growth and the rate of labor force participation as given (not a function of GDP or employment growth) and then asks questions about GDP growth and labor market outcomes. Like the Jobs Calculator, the sliders require that things add up, a very useful feature for all those backyard economic prognosticators (we know you're out there).

Let's look at an example of using the sliders. The Congressional Budget Office (CBO) projects that the labor force participation rate (LFPR) will maintain roughly its current level of 62.9 percent during the next couple of years, as the downward pressure of retiring baby boomers and the upward pressure from robust hiring hold the rate stable. The CBO also projects that labor productivity growth will gradually increase to almost 1 percent over roughly the same period.

Suppose we want to know what GDP growth would be over the next couple of years (other things equal) if labor productivity, which has been sluggish lately, returned to 1 percent, as projected by the CBO. By moving the Labor Productivity slider in the tool to 1 percent and the Months slider to 24, you will see how productivity alone affects GDP growth: it increases to about 2 percent (see the image below). In this experiment, the unemployment rate, average job growth, and LFPR are constrained to current levels.

However, there's more than one way to achieve GDP growth of 2 percent over the next two years. Let's take a look.

Hit the reset button, and productivity, GDP growth, and months revert to their starting values. Then move the Months slider to 24 and the GDP Growth slider to 2 percent. You then see that—at current levels of labor force participation and labor productivity growth—achieving 2 percent GDP growth over the next two years would require the economy to create about 200,000 jobs per months (see the image below), which would push the unemployment rate down to 3.1 percent (a rate not seen since the early 1950s).

Hit the reset button again. Achieving 2 percent GDP growth over the next two years is also realistic with a higher LFPR, some other things equal. First, move the Months slider to 24, then move the Labor Force Participation Rate slider to 63.7 percent. The higher LFPR is consistent with about 2 percent growth in GDP and roughly 200,000 additional jobs added each month (see the image below). (This scenario constrains the unemployment rate and labor productivity growth rate to their current levels.) Of course, we haven't seen the LFPR at 63.7 percent since 2012, but that's another discussion.

What if we wanted something a bit more ambitious, such as averaging 3 percent GDP growth over the next couple of years? Hit the reset button again, and try this scenario. Keep Labor Force Participation Rate at its current level (consistent with the CBO's projection), set Labor Productivity growth to 1 percent (also using the CBO projection as a guide), move the Months slider to 24, and the GDP Growth slider to 3 percent. The Labor Market Sliders allow us to see that the economy would need to add an average of about 240,000 jobs each month for those two years. This scenario, the tight-labor-market method of achieving 3 percent GDP growth, would bring the unemployment rate down to 2.6 percent.

However, suppose the United States were somehow able to recapture productivity growth of around 2 percent, which we experienced in the late 1990s and early 2000s. In that case, 3 percent GDP could be achieved at the current employment growth and unemployment rate.

I encourage you to play around and devise your own "what if" scenarios—and use the Labor Market Sliders to make sure they add up.

May 5, 2017 in Economic conditions, Economic Growth and Development, Employment, Labor Markets, Unemployment, Wage Growth | Permalink

Comments

Post a comment

Comments are moderated and will not appear until the moderator has approved them.

If you have a TypeKey or TypePad account, please Sign in

Google Search



Recent Posts


Archives


Categories


Powered by TypePad