About


The Atlanta Fed's macroblog provides commentary and analysis on economic topics including monetary policy, macroeconomic developments, inflation, labor economics, and financial issues.

Authors for macroblog are Dave Altig, John Robertson, and other Atlanta Fed economists and researchers.


February 07, 2017


Net Exports Continue to Bedevil GDPNow

Real gross domestic product (GDP) grew at an annualized rate of 1.9 percent in the fourth quarter, according to the advance estimate from the U.S. Bureau of Economic Analysis (BEA), 1.0 percentage point below the Atlanta Fed's final GDPNow model projection. This was a sizable miss relative to other forecasts. Both the consensus estimate from the January Wall Street Journal Economic Forecasting Survey and the January 20 staff nowcast from the New York Fed were expecting 2.1 percent growth last quarter.

The miss was also large relative to the historical accuracy of the GDPNow model. As the table below shows, almost all of GDPNow's error for fourth quarter growth was concentrated in real net exports. For the other broad subcomponents, GDPNow was more accurate than usual, as the last two columns of the table show. But net exports subtracted 1.70 percentage points from real GDP growth last quarter, whereas GDPNow forecasted they would only reduce growth by 0.64 percentage points. All but 0.02 percentage points of this error was in the "goods" category as opposed to services.

Three months ago, I wrote a macroblog post showing that nearly all of GDPNow's 0.8 percentage point error for third-quarter growth was concentrated in goods net exports. That analysis explained how GDPNow's goods net exports forecast is a weighted average of two forecasts. One of these forecasts is a "bean counting" model that uses monthly source data on nominal values and price deflators for goods imports and exports. The other is a quarterly econometric model that uses subcomponents of real GDP for prior quarters. In the GDPNow model, the "bean counting" model gets nearly 60 percent of the weight just before the advance GDP release.

To see how this approach matters for the GDP forecast, the following chart shows the "real-time" forecasts of the contribution of goods net exports to growth just before BEA's advance GDP estimate from the two models alongside the advance estimate of the contribution and the final GDPNow forecast.

We see that the "bean counting" forecast has been much more accurate than the quarterly econometric forecast, particularly for the last two quarters of 2016. Not surprisingly given its name, the "bean counting" model was able to largely capture the 0.75 percentage points that soybean exports contributed to third-quarter real GDP growth and the just over 0.5 percentage points they likely subtracted from fourth-quarter growth. The econometric model was not.

The final forecasts of goods net exports from the "bean counting" model have also been more accurate than GDPNow since forecasts were first posted online in mid-2014. Does this imply that an alternative "bean counting" version of GDPNow would be preferable? The answer is less obvious than you might think. Not putting any weight on the quarterly econometric model for any GDP subcomponents yields an average error for GDP growth (without regard to sign) of 0.635 percentage points, and the same statistic for GDPNow is 0.589 percentage points. This is despite the fact that the "bean counting" approach has been more accurate than GDPNow in its forecasts of net exports and about as accurate, on balance, for the other GDP subcomponents.

The final forecast of real GDP growth last quarter of this alternative "bean counting" model was 2.8 percent—only slightly more accurate than GDPNow. (For each GDP subcomponent, I include the "bean counting" and quarterly econometric model forecasts in this excel spreadsheet.)

However, if variants like the aforementioned "bean counting" approach continue to outperform the GDPNow model in one or more dimensions, we may consider regularly reporting their forecasts along with the GDPNow forecast.

February 7, 2017 in Forecasts, GDP | Permalink

Comments

Post a comment

Comments are moderated and will not appear until the moderator has approved them.

If you have a TypeKey or TypePad account, please Sign in

December 05, 2016


Using Judgment in Forecasting: Does It Matter?

​​

Many professional forecasters use statistical models when making their near-term projections for real gross domestic product (GDP) growth. A 2013 special survey on the forecasting methods of the Survey of Professional Forecasters  found that 18 out of 21 respondents featured a statistical model prominently in their current-quarter economic projections. Nevertheless, there is fairly compelling evidence that many professional forecasters incorporate judgment in their forecasts of the first estimate of real GDP growth for a quarter—even when much of the source data used to construct the GDP estimate are available.

In the October 2016 Wall Street Journal Economic Forecasting Survey (WSJ), the most common panelist projection for annualized third-quarter real GDP growth was 2.5 percent, and the second most common one was 3.0 percent. The first digit after the decimal point, or tenths digit, of these two numbers are "5" and "0." Of the 58 individual forecasts of third-quarter growth in the survey, 21 had a tenths digit of "0" or "5," a total that is almost twice as large as we would expect if all tenths digits were equally likely to be submitted.

This pattern isn't unique to the most recent quarter's GDP forecast. The following chart shows the historical frequency of the tenths digit in past WSJ surveys for first estimates of real GDP growth over the period from the first quarter of 2003 to the third quarter of 2016, made about three weeks before the release.

Almost 40 percent of these 2,390 forecasts have a tenths digit of "0" or "5." In contrast, the historical distribution of published first estimates of real GDP growth from the fourth quarter of 1991 to the third quarter of 2016 and real gross national product (the most common measure of U.S. production in an earlier era) growth from the third quarter of 1965 to the third quarter of 1991 has a tenths digit of either "0" or "5" only 18 percent of the time. The historical Atlanta Fed's GDPNow forecasts have a "0" or a "5" tenths digit only 15 percent of the time.

More formally, one easily can reject the hypothesis at the 1 percent significance level that the tenths digit of the WSJ panelist forecasts are either uniformly distributed or follow the Benford distribution for tenths digits after rounding to the nearest tenth (see this paper by economists Stefan Gunnel and Karl-Heinz Todter, who found similar relative frequencies of "0s" and "5s" in professional forecasts of German GDP growth and consumer price index inflation).

If we assume that near-term GDP growth forecasts with a tenths digit of "0" or "5" typically involve more judgment than forecasts with another tenths digit, a natural question is whether these more judgmental forecasts are less accurate than others. Of the 2,390 WSJ growth forecasts mentioned above, the ones with a tenths digit of "0" or "5" (after rounding to the nearest tenth) had an average error of 0.786 percentage points without regard to sign, and the others had an average error of 0.743 percentage points. These accuracy metrics are not statistically different at even the 10 percent significance level. Moreover, because of the panel nature of WSJ forecasts, we can measure how often a forecaster has a tenths digit of "0" or "5" (after rounding). Of the 44 panelists who submitted at least 30 three-week-ahead GDP forecasts during the period of the first quarter of 2003 through the third quarter of 2016, the correlation of the panelists "0" or "5" tenth digit frequency and their average error without regard to sign is only 0.13 and not significantly different from 0.

Although at least some professional forecasters appear to make judgmental adjustments to their near-term GDP projections, the evidence presented here does not suggest it comes, on average, at the cost of accuracy.

December 5, 2016 in Forecasts, GDP | Permalink

Comments

In the 70s when macro models first became commercially available and widely used, an economist at the Boston Fed wrote an annual article comparing the forecasting track records of models run without any judgemental adjustments (e.g. Ray Fair), those with adjustments (e.g. Chase, Wharton, DRI), and purely judgemental. His work consistently showed the combination of statistical modeling with judgemental adjustments produced the most accurate forecasts. Looks like things have not changed much.

Posted by: Douglas Lee | December 08, 2016 at 07:39 AM

Post a comment

Comments are moderated and will not appear until the moderator has approved them.

If you have a TypeKey or TypePad account, please Sign in

November 07, 2016


The Price Isn't Right: On GDPNow's Third Quarter Miss

The U.S. Bureau of Economic Analysis's (BEA) first estimate of third quarter annualized real gross domestic product (GDP) growth released on October 28 was 2.9 percent. A number of nowcasts were quite close to this number, including the median forecast of 3.0 percent from the CNBC Rapid Update surveyOff-site link of roughly 10 economists. The Atlanta Fed's GDPNow model forecast of 2.1 percent? Not so close.

What accounted for GDPNow's miss? The table below shows the GDPNow forecasts and BEA estimates of the percentage point contributions to third quarter growth of six subcomponents that together make up real GDP. The largest forecast error, both in absolute terms and relative to the historical accuracy of the projections, was for the contribution of real net exports to growth. The published contribution of 0.83 percentage points was much higher than the model's estimate of 0.07 percentage points.

Why did GDPNow miss so badly on net exports? For both goods and services real net exports, the GDPNow forecast is a weighted average of two forecasts. The "bean counting" forecast uses the monthly source data on the nominal values and price deflators of exports and imports. The econometric model forecast uses published values of 13 subcomponents of real GDP for the last five quarters to predict real net exports for both goods and services. The statistically determined weights on the bean counting forecast increase as we get closer to the first GDP release and accumulate more monthly source data. (More details are provided here.)

For real net exports of services, 89 percent of the weight was given to the bean counting forecast. This weighting worked out well last quarter as the forecasts of the contribution of real services net exports to third quarter growth from both the bean counting and combined models were within 0.01 percentage points of the published value of −0.14 percentage points. But for real net exports of goods, the bean counting forecast received only 59 percent of the weight in the final GDPNow forecast. It projected that real net exports of goods would add 0.76 percentage points to growth—reasonably close to the BEA estimate. In contrast, the econometric model projected a subtraction of 0.58 percentage points from growth.

Since GDPNow had monthly price and nominal spending data through September on goods imports and exports, why didn't it place more weight on the source data? One of the important reasons is that it's difficult to match the quarterly inflation rate of the BEA's import price deflator for goods. The BEA constructs its price deflator  with detailed price indices from the Bureau of Labor Statistics (BLS) producer price index and import/export price index programs as well as a few other sources. GDPNow uses the BLS's import price data at higher levels of aggregation than the BEA uses and also differs in the manner that it handles seasonality. The chart below plots the difference between the BEA's quarterly goods import price inflation rate and the GDPNow proxy. These inflation measures have differed by 5 percentage points or more on a number of occasions. Since goods imports are 12 percent of GDP, a miss of this magnitude on the price deflator would lead to a miss on the real net exports of goods contribution to growth of 0.5 percentage points or more, even if the other ingredients in the calculation were all correct.

Are there any lessons here for improving GDPNow? Ideally, GDPNow would be able to closely map the monthly source data to real goods net exports so that most of the weight would go to the bean counting forecast once all of the data are in—much as it does with nonresidential structures and residential investment. The BEA's estimates of real petroleum imports are based on similar data in the monthly international trade data publication. Because petroleum imports account for so much of the volatility of inflation for goods imports, it may be better to use the monthly real petroleum imports data directly and only worry about replicating the price index for nonpetroleum goods.

That said, a previous macroblog post illustrated that the method GDPNow currently uses has a reasonable forecasting track record for net exports when compared with several consensus estimates from professional forecasters. Net exports may remain difficult to nowcast even with refinements to GDPNow's methodology.

GDPNow has established a commendable track record. But sometimes when it misses the mark, an analysis of the error can provide insight into how GDPNow works and the limitations of the model.

November 7, 2016 in Forecasts, GDP | Permalink

Comments

i favor bean counting, and have always thought that when you adjust your forecast for reports that aren't in the bean jar (such as the unweighted ISM PMI opinion surveys) you're leaving yourself open for just the kind of miss you saw this time..

Posted by: rj sigmund | November 08, 2016 at 09:49 AM

Post a comment

Comments are moderated and will not appear until the moderator has approved them.

If you have a TypeKey or TypePad account, please Sign in

May 23, 2016


Can Two Wrongs Make a Right?

In a recent macroblog post, I showed that forecasts from the Atlanta Fed's real gross domestic product (GDP) nowcasting model—GDPNow—have been about as accurate a forecast of the U.S. Bureau of Economic Analysis's (BEA) first estimate of real GDP growth as the consensus from the Wall Street Journal Economic Forecasting Survey. Because GDPNow essentially uses a "bean-counting" approach that tallies the forecasts of the various main subcomponents of GDP, the total GDP forecast error can be broken up into the forecast errors coming from each piece of GDP. For most of the subcomponents of GDP, the contribution to total GDP growth is approximately its real growth rate multiplied by its expenditure share of nominal GDP (the exact formulas are in the working paper for GDPNow). The following chart shows the subcomponent contributions to the GDPNow forecast errors since the third quarter of 2011. (I want to note that the forecast errors are based on the final GDPNow forecasts formed before the BEA's first estimates of GDP are released.)

The forecast errors for the subcomponents can sometimes be quite large. For example, for the fourth quarter of 2013, GDPNow underestimated the combined contributions of net exports and inventory investment by nearly 2 percentage points. However, these misses were nearly offset by overestimates of the other contributions to growth (consumption, business and residential fixed investment, and government spending).

The pattern of large but largely offsetting GDP subcomponent errors has been attributed to the work of a fictional "Saint Offset," as former Fed Governor Laurence Meyer noted in a 1998 speech. Unfortunately, "Saint Offset" doesn't always come to the forecaster's aid. For example, in the fourth quarter of 2011, GDPNow predicted 5.2 percent growth—well above the BEA's first estimate of 2.8 percent—and the subcomponent errors were predominantly on the high side.

A closer look at the chart also reveals that GDPNow has had a tendency to overestimate the contribution of business fixed investment to growth and underestimate the growth contribution of inventory investment. Although these subcomponent biases have nearly offset one another on average, we really don't want to have to rely on "Saint Offset." We would like the subcomponent forecasts to be reasonably accurate because the subcomponents of GDP are of interest in their own right.

Have the subcomponent biases been a unique feature of GDPNow forecasts? It appears not. Both the Survey of Professional of Forecasters (SPF), conducted about 11 weeks prior to the first GDP release, and Blue Chip Economic Indicators, conducted as close as three weeks prior to the first release, provide consensus forecasts for some GDP subcomponents. The following table provides an average forecast error (as a measure of bias) and average absolute forecast error (as a measure of accuracy) of the subcomponent growth contributions for the two surveys and comparably timed GDPNow forecasts.

We see that the biases in GDPNow's subcomponents have been fairly similar to those in the two surveys. For example, all three sources have underestimated the average inventory investment contribution to growth by fairly similar magnitudes.

The relative accuracy of GDPNow's subcomponent and overall GDP forecasts has also been similar to the accuracy of the two surveys. "Saint Offset" has helped all three forecasters; the standard errors of the real GDP forecasts are 20 percent to 40 percent lower than they would be if the forecast errors of the subcomponents did not cancel each other out.

Finally, notice that some GDP subcomponents appear to be much more difficult to forecast than others. For instance, the bias and accuracy metrics for consumer spending are smaller than they are for inventory investment. This differential is not really that surprising, because more monthly source data are available prior to the first GDP release for consumer spending than for inventory investment.

Can we take any comfort in knowing that private forecasters have mirrored the biases in GDPNow's subcomponent forecasts? An optimistic interpretation is that the string of one-sided misses are the result of bad luck—an atypical sequence of shocks that neither GDPNow nor private forecasters could account for. A more troubling interpretation is that there have been structural changes in the economy that neither GDPNow nor the consensus of private forecasters have identified. Irrespective of the reason, though, optimal forecasts should be unbiased. If biases in some of the subcomponents continue, then forecasters will need to look for a robust way to eliminate them.

May 23, 2016 in Forecasts, GDP | Permalink

Comments

Two wrongs can make a right. But it is not always the same two wrongs.

Posted by: Robert F. Dieli | May 24, 2016 at 08:53 AM


since you're projecting the real change in GDP from one quarter to the next, the BLS price indexes that the BEA uses to compute the deflators for the various components of GDP are an integral part of that change, yet there's no indicaton that your model takes those prices indices into account...every month you'll adjust your estimate of the change in real PCE when the retail sale report comes out, but the retail sales report tells us very little about PCE until the CPI report is released several days later...

i also have a problem with your use of the ISM surveys, unweighted diffusion indexes derived from samplings of subjective executive opinion....any correspondence those survey results have with the output of goods and services for the same month is pure chance..

your forecasts could be improved if you hewed closer to the methods that the BEA uses to compute GDP that are described in the NIPA Handbook...

Posted by: rjs | May 24, 2016 at 10:30 PM

Post a comment

Comments are moderated and will not appear until the moderator has approved them.

If you have a TypeKey or TypePad account, please Sign in

May 16, 2016


GDPNow and Then

Real-time forecasts from the Atlanta Fed’s real gross domestic product (GDP) nowcasting model—GDPNow—have been regularly updated since August 2011 (the model was introduced online in July 2014). So we now have a nearly five-year history to allow us to evaluate the accuracy of the model’s forecasts. The chart below shows forecasts from GDPNow (red dots) alongside actual first estimates of real GDP growth (gray bars) from the U.S. Bureau of Economic Analysis (BEA). For comparison, the blue dots in the chart are the consensus (average) forecasts from the Wall Street Journal Economic Forecasting Survey (WSJ Survey).

chart-one

The initial estimate of real GDP growth for a particular quarter is usually published at the end of the subsequent month. The WSJ Survey consensus forecasts plotted above were released about two weeks before these estimates. To maintain comparable timing with the WSJ Survey, the GDPNow forecasts shown in the chart are those constructed on or before the 12th day of the same month.

Occasionally, there has been relatively large disagreement between GDPNow and the WSJ consensus. For example, GDPNow predicted that GDP growth would be below 0.5 percent for five out of 19 quarters between 2011 and 2016, and the lowest WSJ Survey consensus forecast for any of those quarters was 1.3 percent. Nonetheless, the average accuracy of the GDPNow and WSJ Survey consensus forecasts has been similar: the average absolute forecast error (average error without regard to sign) for GDPNow was 0.56 versus 0.60 for the WSJ Survey consensus.

Studies have shown that the average or median of a set of professional forecasts tends to be more accurate than an individual forecaster (see, for example, here and here). Therefore, it’s surprising that GDPNow has been about as accurate on average as the WSJ Survey consensus. To see just how surprising this result is, I used the fact that the WSJ Survey provides both the names and forecasts of its respondents. From these, I constructed a panel dataset with each respondent’s absolute forecast errors and their absolute disagreement (difference) from the consensus forecast. Using a standard econometric technique (a two-way fixed-effects regression), we can then calculate each panelist’s average absolute GDP forecast error and their average absolute disagreement with the WSJ Survey consensus. These points are shown in the scatterplot below.

chart-two

There is a clear inverse relationship between average forecast accuracy and average disagreement with the WSJ Survey consensus. However, GDPNow’s accuracy and disagreement statistics do not fit the general pattern. GDPNow (the orange diamond in the chart) was more accurate on average than all but six out of 49 WSJ panelists, though at the same time it differed from the consensus by more on average than all but four of the panelists.

What should one infer from all of this? Differences in forecasting method could be part of the explanation. GDPNow differs from many other approaches to nowcasting in that it is essentially a “bean counting” exercise. It doesn’t use historical correlations of GDP with other economic series in the way that commonly used dynamic factor models do, and it also doesn’t incorporate judgmental adjustments (see here for more discussion of these differences). During a period when the economy has been giving very mixed signals, perhaps it doesn’t come as a surprise that GDPNow’s forecasts occasionally deviate quite a bit from the WSJ Survey consensus. Time will tell if GDPNow continues to perform at least as well as the consensus.

May 16, 2016 in Forecasts, GDP | Permalink

Comments

It would be nice to know who are the three forecasters with average absolute error below the 0.5 line.

Posted by: Rafael | May 23, 2016 at 09:28 AM

Post a comment

Comments are moderated and will not appear until the moderator has approved them.

If you have a TypeKey or TypePad account, please Sign in

July 01, 2015


Far Away Yet Close to Home: Discussing the Global Economy's Effects

In case you needed any motivation to take interest in the outcome of ongoing negotiations between the Greek government and its international creditors, this excerpt from the Wall Street Journal ought to do it:

Global growth is really important. We are all connected through the financial markets, through foreign-exchange markets," Fed governor Jerome Powell said last week in an interview with The Wall Street Journal. "If global growth weakens, or remains weak, and we get into a trend of that, then yes, that will be a big headwind for the United States economy."

Last week, I participated in the latest edition of our webcast, ECONversations, devoted to the theme "what to make of the first quarter?" (The webcast can be found here). The conversation revolved around the Atlanta Fed staff's view of why 2015 began with such a whimper and ideas on prospects for improvement through the balance of the year.

Not surprisingly, the international context loomed large. Between June 2014 and March 2015, the U.S. dollar appreciated by about 14 percent against a broad basket of currencies, and by about 20 percent against major currencies. The dollar has roughly remained in those neighborhoods since. As to the gross domestic product (GDP) side of the story, arithmetically net exports subtracted almost 2 percentage points off first quarter growth.

A key assumption of our current outlook is that the international environment (including the exchange rate) will stabilize, and smoother sailing without the "big headwind" referenced by Governor Powell is ahead.

That assumption generated some discussion (in the Q&A part of the webcast, and via online questions). With some paraphrasing, here are a few of the comments and questions we received, and my best attempt to respond:

Q: You associate the prior appreciation in the dollar with a several percentage point subtraction from growth in the first quarter. This seems quite large in context of available research on the elasticity of the trade balance to movements in the foreign exchange value of the dollar.

A: In the webcast, I did loosely refer to the trade effect on first quarter GDP as a "dollar effect." But the questioner—Barclay's head of U.S. economics research, Michael Gapen— is completely correct in asserting that standard estimates wouldn't support exchange-rate appreciation as an all-encompassing explanation for the big first quarter trade deficit. Our own estimates imply that four quarters after an exchange rate shock that raises the real broad-dollar index by 10 percentage points, real GDP is about one-half a percentage point lower than it would have been without the shock. This impact is roughly the same as most standard estimates (including Barclay's).

Some analyses might imply a larger GDP impact for the pure dollar effect, but any reasonable estimate would leave a fair amount of the first quarter net export decline unexplained. In any event, exchange-rate movements are both cause and effect, which brings us to:

Q: I have a question regarding the impact of the U.S. dollar (USD) in the economy. We often learn that changes in the real exchange rate affect the economy with a lag. Take Japan, for instance. It had a substantial depreciation in Japanese yen (JPY) real exchange rate but with very minimal impact on Japan's trade performance so far. What makes you so confident that the strong USD has had a strong impact in the U.S. economy in such a short period of time? Wouldn't the negative contribution from net exports more likely be linked to delays in West Coast ports and the sharp slowdown in Asian economies (China, in particular)?

A: Yes, in our analysis (and most we know of), the effects of exchange rates occur with a lag. And, as noted above, only a fraction of the decline in net exports by the end of 2014 and into the beginning of this year can be plausibly attributed to dollar appreciation. But we do think those effects are there, and they are continuing (to a lesser extent) in the current quarter.

Of course, changes in the value of the currency are an effect of other developments as well as a cause of changes in exports, GDP, and the like. All else is not typically equal, which often makes simple correlations (or, in the Japanese case, the lack thereof) difficult to interpret.

One of those "not equal" things could well have been the port delays. We don't have a firm estimate of how the backlogs might have affected the first quarter GDP statistic. If the impact was indeed material, we should see some reversal in the second and third quarters now that things are apparently getting back to normal. We'll count that as an upside risk.

And looking forward?

Q: Shouldn't the economic crisis in Greece dampen the demand for American exports and decrease growth well into the fourth quarter?

A: The good news is that current forecasts suggest 2015 euro-area growth will exceed its 2014 pace (according to the World Bank). In fact, the 2015 forecast strengthened over the course of this year despite the ongoing uncertainty associated with the Greek crisis. By most accounts, Canadian economic activity this year is expected to follow a trajectory similar to the United States (in like a lamb, out like something less lambish).

Mexico, as well, is expected to show more growth this year than last, despite some softening of the outlook since the beginning of the year. Put those three together (expanding the euro area to the entire European Union), and you have the anticipation of some improvement in countries accounting for somewhere in the neighborhood of 55 percent of our export markets.

The bad news is the ongoing uncertainty associated with the Greek crisis. Further, the outlook in emerging economies is growing more downbeat. These realities—a continuing impact of prior dollar appreciation and the fact that better foreign growth still does not equate to great growth—has us reluctant to think that net exports will be a big positive number in this year's GDP calculations. That reluctance notwithstanding, for now we are writing in a smaller trade deficit over the course of the year than what we saw in the first quarter.

If you want to go into the July 4 holiday on a somewhat optimistic note, I'll note that our GDPNow estimates for the second quarter have strengthened substantially with the arrival of more recent data—notably including signals of a much lower trade deficit effect than in the first quarter and today's positive news on manufacturing and nonresidential construction. Those data may not be enough to generate full confidence in our forecast for a much better second half of 2015, but they are moving in the right direction.


July 1, 2015 in Economic Growth and Development, GDP | Permalink

Comments

Post a comment

Comments are moderated and will not appear until the moderator has approved them.

If you have a TypeKey or TypePad account, please Sign in

April 20, 2015


What the Weather Wrought

At Seeking Alpha, Joseph Calhoun responds to Friday's macroblog post, which noted that, over the course of the recovery, first-quarter gross domestic product (GDP) growth has on average been slower than the quarterly performance over the balance of the year:

... the "between-the-lines" meaning of the Atlanta post is to ignore all of this since this weakness is being portrayed as "just like last year" a statistical problem in the one measure that economists think most represents the economy.

Rest assured, we try pretty hard to not place any messages "between the lines," and the penultimate sentence of Friday's piece was meant to strike the appropriately tentative tone: "As for the rest of the year, we'll have to wait and see."

We do believe, like others, that weather was at play in the subpar performance of 2015's debut. Severe weather, in February in particular, can explain some of the first-quarter weakness, but "some" is the operative qualifier. 

As the following chart illustrates, relative to a baseline forecast without weather effects—proxied with National Oceanic and Atmospheric Administration measures of heating and cooling days through March—we estimate that the severity of the winter subtracted about 0.6 percentage point from GDP growth:

150420

Two points: First, to the extent that weather is a culprit in subpar first-quarter growth, we should see some payback in the current quarter (as, dare we say, we saw last year).

Second, we (the Atlanta Fed staff) did not begin the year projecting first-quarter growth at a mere 1.8 percent annualized (as the benchmark forecast in the experiment illustrated above implies). That rate of growth is a considerable step-down from our forecast at the beginning of the year, forced by the realities of the incoming data (as captured, for example, by GDPNow estimates). That gap leaves plenty of explaining left to do.

Observable developments can plausibly explain much of the forecast miss—mainly the initial, somewhat ambiguous, impact of energy price declines and the rapid, steep appreciation of the dollar, which has clearly been associated with a suppression of export activity. Our current view is that, as energy prices and the exchange rate stabilize, we will see a return to growth patterns that are closer to 3 percent than 1 percent.

We are not, however, selling the position that it is wise to be completely sanguine about the rest of the year. Here is the official word from Dennis Lockhart, president of the Atlanta Fed (subscription required for full citation):

I lean to a later lift-off date [for the federal funds rate target]. To the extent you want to simplify that debate to June versus September, I lean to September. I don't think, given the progress we have made, the state of the economy, and my confidence that the first quarter was an aberration, that it would be horribly damaging to go a little earlier versus later. But my preference would be to wait for more confirming evidence that we are on the track we think we are on and we expect to carry us back to inflation toward target.


photo of Dave Altig
By Dave Altig, executive vice president and research director of the Atlanta Fed

April 20, 2015 in Economic conditions, Forecasts, GDP | Permalink

TrackBack

TrackBack URL for this entry:
http://www.typepad.com/services/trackback/6a00d8341c834f53ef01bb0820968f970d

Listed below are links to blogs that reference What the Weather Wrought:

Comments

Dave,

Just so you know, the piece on Seeking Alpha was written by my colleague Jeff Snider. They republish our feed and for some reason all the posts over there have my name on them.

Jeff's view of the economy is quite a bit more negative than my own. My views aren't that different than yours. The current slowdown, which I started to notice in the 4th quarter, is about the shale industry primarily. I'm not a big fan of the weather excuse but it probably had some effect. As for the rest of the year, I am concerned about inventories and how companies will react if we don't see some kind of pick up fairly soon. Recession? I don't know but based on the yield curve and credit spreads I can't make that case right now. As you say, we'll see how it plays out.

However, despite our slight disagreement on the current short term trajectory of the economy, Jeff and I agree on a lot. Neither of us were fans of QE and think it has likely done more harm than good. I won't take up any more space but suffice it to say that we are skeptical of monetary solutions to what we see as structural problems.

Joe Calhoun

Posted by: Joseph Calhoun | April 20, 2015 at 06:38 PM

Post a comment

Comments are moderated and will not appear until the moderator has approved them.

If you have a TypeKey or TypePad account, please Sign in

April 17, 2015


Déjà Vu All Over Again

In a recent interview, Fed Vice Chairman Stanley Fischer said, “The first quarter was poor. That seems to be a new seasonal pattern. It's been that way for about four of the last five years.”

The picture below illustrates the vice chair's sentiment. Output in the first quarter has grown at a paltry 0.6 percent during the past five years, compared to a 2.9 percent average during the remaining three quarters of the year.

Real Gross Domestic Product Growth by Quarter

What's causing this pattern? Well, it could be we just get really unlucky at the same time every year. Or, it could be a more technical problem with seasonal adjustment after the Great Recession (this paper by Jonathan Wright covers the topic using payroll data). It also seems likely that we can just blame the weather (see this Wall Street Journal blog post).

Whatever the reason for the first-quarter weakness, it appears to be happening again. Our current quarterly tracking estimate—GDPNow—has first-quarter growth hovering just above zero. As for the rest of the year, we'll have to wait and see. We of course hope it follows the postrecession pattern.


April 17, 2015 in Economic Growth and Development, GDP | Permalink

TrackBack

TrackBack URL for this entry:
http://www.typepad.com/services/trackback/6a00d8341c834f53ef01bb081f01c8970d

Listed below are links to blogs that reference Déjà Vu All Over Again:

Comments

I blame China and the Lunar New Year which as Asia grows in importance introduces seasonal volatility into 1Q. For proof look at table 2 contribution to GDP in the bea release. 1Q contribution from net trade is always negative in 1Q.

I also blame the Govt, both 4Q and 1Q are very seasonal ever since 2010.

Possibly blame global climate change as the winters are colder and summers are warmer this introduces larger swings in utility usage

Posted by: Mike Donnelly | April 29, 2015 at 11:27 AM

Post a comment

Comments are moderated and will not appear until the moderator has approved them.

If you have a TypeKey or TypePad account, please Sign in

April 02, 2015


What Seems to Be Holding Back Labor Productivity Growth, and Why It Matters

The Atlanta Fed recently released its online Annual Report. In his video introduction to the report, President Dennis Lockhart explained that the economic growth we have experienced in recent years has been driven much more by growth in hours worked (primarily due to employment growth) than by growth in the output produced per hour worked (so-called average labor productivity). For example, over the past three years, business sector output growth averaged close to 3 percent a year. Labor productivity growth accounted for only about 0.75 percentage point of these output gains. The rest was due primarily to growth in employment.

The recent performance of labor productivity stands in stark contrast to historical experience. Business sector labor productivity growth averaged 1.4 percent over the past 10 years. This is well below the labor productivity gains of 3 percent a year experienced during the information technology productivity boom from the mid-1990s through the mid-2000s.

John Fernald and collaborators at the San Francisco Fed have decomposed labor productivity growth into some economically relevant components. The decomposition can be used to provide some insight into why labor productivity growth has been so low recently. The four factors in the decomposition are:

  • Changes in the composition of the workforce (labor quality), weighted by labor's share of income
  • Changes in the amount and type of capital per hour that workers have to use (capital deepening), weighted by capital's share of income
  • Changes in the cyclical intensity of utilization of labor and capital resources (utilization)
  • Everything else—all the drivers of labor productivity growth that are not embodied in the other factors. This component is often called total factor productivity.

The chart below displays the decomposition of labor productivity for various time periods. The bar at the far right is for the last three years (the next bar is for the past 10 years). The colored segments in each bar sum to average annual labor productivity growth for each time period.

Decomposition of Business Sector Labor Productivity Growth

Taken at face value, the chart suggests that a primary reason for the sluggish average labor productivity growth we have seen over the past three years is that capital spending growth has not kept up with growth in hours worked—a reduction in capital deepening. Declining capital deepening is highly unusual.

Do we think this sluggishness will persist? No. In our medium-term outlook, we at the Atlanta Fed expect that factors that have held down labor productivity growth (particularly relatively weak capital spending) will dissipate as confidence in the economy improves further and firms increase the pace of investment spending, including on various types of equipment and intellectual capital. We currently anticipate that the trend in business sector labor productivity growth will improve to a level of about 2 percent a year, midway between the current pace and the pace experienced during the 1995–2004 period of strong productivity gains. That is, we are not productivity pessimists. Time will tell, of course.

Clearly, this optimistic labor productivity outlook is not without risk. For one thing, we have been somewhat surprised that labor productivity has remained so low for so long during the economic recovery. Moreover, the first quarter data don't suggest that a turning point has occurred. Gross domestic product (GDP) in the first quarter is likely to come in on the weak side (the latest GDPNow tracking estimate here is currently signaling essentially no GDP growth in the first quarter), whereas employment growth is likely to be quite robust (for example, the ADP employment report suggested solid employment gains). As a result, we anticipate another weak reading for labor productivity in the first quarter. We are not taking this as refutation of our medium-term outlook.

Continued weakness in labor productivity would raise many important questions about the outlook for both economic growth and wage and price inflation. For example, our forecast of stronger productivity gains also implies a similarly sized pickup in hourly wage growth. To see this, note that unit labor cost (the wage bill per unit of output) is thought to be an important factor in business pricing decisions. The following chart shows a decomposition of average growth in business sector unit labor costs into the part due to nominal hourly wage growth and the part offset by labor productivity growth:

Decomposition of Unit Labor Cost Growth

The 1975–84 period experienced high unit labor costs because labor productivity growth didn't keep up with wage growth. In contrast, the relatively low and stable average unit labor cost growth we have experienced since the 1980s has been due to wage growth largely offset by gains in labor productivity. Our forecast of stronger labor productivity growth implies faster wage growth as well. That said, a rise in wage growth absent a pickup in labor productivity growth poses an upside risk to our inflation outlook.

Of course, the data on productivity and its components are estimates. It is possible that the data are not accurately reflecting reality in real time. For example, colleagues at the Board of Governors suggest that measurement issues associated with the price of high-tech equipment may be causing business investment to be somewhat understated. That is, capital deepening may not be as weak as the current data indicate. In a follow-up blog to this one, my Atlanta Fed colleague Patrick Higgins will explore the possibility that the weak labor productivity we have recently experienced is likely to be revised away with subsequent revisions to GDP and hours data.


April 2, 2015 in Employment, Forecasts, GDP, Productivity, Unemployment | Permalink

TrackBack

TrackBack URL for this entry:
http://www.typepad.com/services/trackback/6a00d8341c834f53ef01b7c7712209970b

Listed below are links to blogs that reference What Seems to Be Holding Back Labor Productivity Growth, and Why It Matters:

Comments

" It is possible that the data are not accurately reflecting reality in real time."

Thanks for the link. Reading the article you'd have to say that this could be a gross understatment. They are still struggling to cope with "tablets". They don't even mention "smartphones"!

Posted by: jamesxinxlondon | May 19, 2015 at 04:25 PM

Post a comment

Comments are moderated and will not appear until the moderator has approved them.

If you have a TypeKey or TypePad account, please Sign in

March 05, 2015


Could Reduced Drilling Also Reduce GDP Growth?

Five or six times each month, the Atlanta Fed posts a "nowcast" of real gross domestic product (GDP) growth from the Atlanta Fed's GDPNow model. The most recent model nowcast for first-quarter real GDP growth is provided in table 1 below alongside alternative forecasts from the Philadelphia Fed's quarterly Survey of Professional Forecasters (SPF) and the CNBC/Moody's Analytics Rapid Update survey. The Atlanta Fed's nowcast of 1.2 percent growth is considerably lower than both the SPF forecast (2.7 percent) and the Rapid Update forecast (2.6 percent).

Table 1: Nowcasts of 2015:Q1 real GDP growth

Why the discrepancy? The less frequently updated SPF forecast (now nearly a month old) has the advantage of including forecasts of major subcomponents of GDP. Comparing the subcomponent forecasts from the SPF with those from the GDPNow model reveals that no single factor explains the difference between the two GDP forecasts. The GDPNow model forecasts of the real growth rates of consumer spending, residential investment, and government spending are all somewhat weaker than the SPF forecasts. Together these subcomponents account for just under 1.0 percentage point of the 1.5 percentage point difference between the GDP growth forecasts.

Most of the remaining difference in the GDP forecasts is the result of the different forecasts for real business fixed investment (BFI) growth. The GDPNow model projects a sharp 13.5 percent falloff in nonresidential structures investment that largely offsets the reasonably strong increases in the other two subcomponents of BFI. Much of this decline is due to petroleum and natural gas well exploration; a component which accounts for almost 30 percent of nonresidential structures investment and looks like it will fall sharply this quarter. The remainder of this blog entry "drills" down into this portion of the nonresidential structures forecast (pun intended). (A related recent analysis using the GDPNow model has been done here).

A December macroblog post I coauthored with Atlanta Fed research director Dave Altig presented some statistical evidence that in the past, large declines in oil prices have had a pronounced negative effect on oil and mining investment. Chart 1 below shows that history appears to be repeating itself.

Chart 1: Indicators of drilling activity and oil prices

The Baker Hughes weekly series on active rotary rigs for oil and natural gas wells has plummeted from 1,929 for the week ending November 21 to 1,267 for the week ending February 27. The Baker Hughes data are the monthly source series for drilling oil and gas wells industrial production (IP) and one of the two quarterly source series for the U.S. Bureau of Economic Analysis's (BEA) estimate of drilling investment (for example, petroleum and natural gas exploration and wells). The other source series for drilling investment is footage drilled completions from the American Petroleum Institute, released about a week before the BEA publishes its initial estimate of GDP.

Chart 2: Indicators of oil drilling and natural gas exploration

Chart 2 displays three of these indicators of drilling activity. The data are plotted in logarithms so that one-quarter changes approximate quarterly growth rates. The chart makes clear that the changes in each of the three series are highly correlated, suggesting that the Baker Hughes rig count can be used to forecast the other series. The Baker Hughes data end on February 27, and we can (perhaps conservatively) extrapolate it forward by assuming it remains at its last reading of 1,267 active rigs through the end of the quarter. We can then use a simple regression to forecast the February and March readings of drilling oil and gas wells IP. Another simple regression with the IP drilling series and its first-quarter forecast allows us to project first-quarter real drilling investment. The forecasts, shown as dashed lines in chart 2, imply real drilling investment will decline at an annual rate of 52 percent in the first quarter. This decline is steeper than the current GDPNow model forecast of a 36 percent decline as the latter does not account for the decline in active rotary rigs in February.

A 52 percent decline in real nonresidential investment in drilling would likely subtract about 0.5 percentage point off of first-quarter real GDP growth. However, it's important to keep in mind that a lot of first quarter source data for GDP are not yet available. In particular, almost none of the source data for the volatile net exports and inventory investment GDP subcomponents have been released. So considerable uncertainty still surrounds real GDP growth this quarter.


March 5, 2015 in Energy, Forecasts, GDP | Permalink

TrackBack

TrackBack URL for this entry:
http://www.typepad.com/services/trackback/6a00d8341c834f53ef01b8d0e3a0ba970c

Listed below are links to blogs that reference Could Reduced Drilling Also Reduce GDP Growth?:

Comments

Post a comment

Comments are moderated and will not appear until the moderator has approved them.

If you have a TypeKey or TypePad account, please Sign in

Google Search



Recent Posts


March 2017


Sun Mon Tue Wed Thu Fri Sat
      1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31  

Archives


Categories


Powered by TypePad