macroblog

About


The Atlanta Fed's macroblog provides commentary on economic topics including monetary policy, macroeconomic developments, financial issues and Southeast regional trends.

Authors for macroblog are Dave Altig and other Atlanta Fed economists.


May 07, 2015


All Eyes on the Consumer

It appears that the first quarter may have been even worse than we thought. The CNBC rapid update—consensus estimates from a panel of forecasters—registered a decline of 0.3 percent as of yesterday.

Clearly, the year didn't start out so well, but here at the Atlanta Fed we have not yet lost faith. We are sticking to the narrative that 2015 will be another solid year of recovery.

That said, our faith is not blind and, befitting data-dependent policymakers, we need to make some call about what it will take to shake our confidence. In a speech delivered yesterday (May 6) in Baton Rouge, Louisiana, Atlanta Fed President Dennis Lockhart pointed to our current lodestar:

As I assess the possible and necessary contributors to a rebound in the second quarter and thereafter, attention has to fall on consumer spending, in my view.

Is there a case for optimism? We think so, and it is based on the assumption that the fundamentals supporting consumer spending have been stronger than the actual recent pace of expenditures. President Lockhart continues:

What's up with the consumer? It's puzzling. The fundamentals supporting consumption growth seem strong. I consider consumer fundamentals to be real personal income growth, household wealth, access to credit, and consumer confidence. Consumer confidence is, in turn, highly influenced by the broad employment outlook.

To be more precise about that sentiment, the chart below illustrates an experiment based on a simple model that incorporates President Lockhart's description of "fundamentals." To be even more precise, we ask the following question: What would we have predicted for consumer spending growth during the past four months based on the history of actual consumer spending and its relationship to income, employment (and unemployment), confidence measures, and wealth (specifically, equity prices)? We also threw inflation and oil prices into the mix for good measure.

Here's what we got:

Real Personal Consumption Expenditures

In other words, the "fundamentals" suggest the four-month annualized growth of consumer spending should have been in excess of 4 percent, as opposed to the approximately 1.5 percent we actually saw. That is a story we don't expect to persist, and our current view of the year is that first-quarter consumer spending results are not indicative of future performance.

Consumers are, of course, a forward-looking bunch, and it is possible the recent weak spending reflects a looming reality not captured by the simple model described above. But our forecast for now is that consumers will move to the fundamentals, and not vice versa.

As President Lockhart said in Louisiana: "Stay tuned."


May 7, 2015 in Economic conditions, Forecasts | Permalink

TrackBack

TrackBack URL for this entry:
http://www.typepad.com/services/trackback/6a00d8341c834f53ef01b7c7867499970b

Listed below are links to blogs that reference All Eyes on the Consumer:

Comments

" What would we have predicted for consumer spending growth during the past four months based on the history of actual consumer spending and its relationship to income, employment (and unemployment), confidence measures, and wealth (specifically, equity prices)? We also threw inflation and oil prices into the mix for good measure."

Over what "history" was the model developed ? If it was over , say , the last five years it might be expected to provide a reasonable forecast , but aggregating over a longer period - one that precedes the crisis - would be problematic.

What about new credit and debt burdens and/or debt service of consumers ? Surely we've learned by now that these are crucial to understanding the evolution of consumer spending.

Posted by: Marko | May 07, 2015 at 06:00 PM

BTW , one only has to look at your recent graph of spending by type to see the effect of credit on spending :

https://www.frbatlanta.org/research/-/media/C7B00E5056E74D2CB7F7DD9399DD0BD6.ashx

The only category that is equaling or exceeding the growth rates of the early 2000s is durables , reflecting the healthy growth in auto sales since the crisis. This has been achieved only by permitting substandard lending practices - boosted by dealer kickback incentives for promoting higher-cost loans. In other words , subprime 2.0.

Is this how we grow nowadays - looser and looser lending at lower and lower rates ?

Maybe we should aim for an income-based consumption model , rather than one that requires ever-increasing household leverage.

Posted by: Marko | May 07, 2015 at 06:17 PM

The Fed as well as other analyst in the financial markets would be wise to anticipate the logical impact of consumer spending as it is bound to GDP growth, which is what is mainly is made up of. Logical in a sense that low energy prices would justify more cash for small businesses and consumers to spend more.

Posted by: omar alexander | May 10, 2015 at 09:00 AM

Post a comment

Comments are moderated and will not appear until the moderator has approved them.

If you have a TypeKey or TypePad account, please Sign in

April 20, 2015


What the Weather Wrought

At Seeking Alpha, Joseph Calhoun responds to Friday's macroblog post, which noted that, over the course of the recovery, first-quarter gross domestic product (GDP) growth has on average been slower than the quarterly performance over the balance of the year:

... the "between-the-lines" meaning of the Atlanta post is to ignore all of this since this weakness is being portrayed as "just like last year" a statistical problem in the one measure that economists think most represents the economy.

Rest assured, we try pretty hard to not place any messages "between the lines," and the penultimate sentence of Friday's piece was meant to strike the appropriately tentative tone: "As for the rest of the year, we'll have to wait and see."

We do believe, like others, that weather was at play in the subpar performance of 2015's debut. Severe weather, in February in particular, can explain some of the first-quarter weakness, but "some" is the operative qualifier. 

As the following chart illustrates, relative to a baseline forecast without weather effects—proxied with National Oceanic and Atmospheric Administration measures of heating and cooling days through March—we estimate that the severity of the winter subtracted about 0.6 percentage point from GDP growth:

150420

Two points: First, to the extent that weather is a culprit in subpar first-quarter growth, we should see some payback in the current quarter (as, dare we say, we saw last year).

Second, we (the Atlanta Fed staff) did not begin the year projecting first-quarter growth at a mere 1.8 percent annualized (as the benchmark forecast in the experiment illustrated above implies). That rate of growth is a considerable step-down from our forecast at the beginning of the year, forced by the realities of the incoming data (as captured, for example, by GDPNow estimates). That gap leaves plenty of explaining left to do.

Observable developments can plausibly explain much of the forecast miss—mainly the initial, somewhat ambiguous, impact of energy price declines and the rapid, steep appreciation of the dollar, which has clearly been associated with a suppression of export activity. Our current view is that, as energy prices and the exchange rate stabilize, we will see a return to growth patterns that are closer to 3 percent than 1 percent.

We are not, however, selling the position that it is wise to be completely sanguine about the rest of the year. Here is the official word from Dennis Lockhart, president of the Atlanta Fed (subscription required for full citation):

I lean to a later lift-off date [for the federal funds rate target]. To the extent you want to simplify that debate to June versus September, I lean to September. I don't think, given the progress we have made, the state of the economy, and my confidence that the first quarter was an aberration, that it would be horribly damaging to go a little earlier versus later. But my preference would be to wait for more confirming evidence that we are on the track we think we are on and we expect to carry us back to inflation toward target.


photo of Dave Altig
By Dave Altig, executive vice president and research director of the Atlanta Fed

April 20, 2015 in Economic conditions, Forecasts, GDP | Permalink

TrackBack

TrackBack URL for this entry:
http://www.typepad.com/services/trackback/6a00d8341c834f53ef01bb0820968f970d

Listed below are links to blogs that reference What the Weather Wrought:

Comments

Dave,

Just so you know, the piece on Seeking Alpha was written by my colleague Jeff Snider. They republish our feed and for some reason all the posts over there have my name on them.

Jeff's view of the economy is quite a bit more negative than my own. My views aren't that different than yours. The current slowdown, which I started to notice in the 4th quarter, is about the shale industry primarily. I'm not a big fan of the weather excuse but it probably had some effect. As for the rest of the year, I am concerned about inventories and how companies will react if we don't see some kind of pick up fairly soon. Recession? I don't know but based on the yield curve and credit spreads I can't make that case right now. As you say, we'll see how it plays out.

However, despite our slight disagreement on the current short term trajectory of the economy, Jeff and I agree on a lot. Neither of us were fans of QE and think it has likely done more harm than good. I won't take up any more space but suffice it to say that we are skeptical of monetary solutions to what we see as structural problems.

Joe Calhoun

Posted by: Joseph Calhoun | April 20, 2015 at 06:38 PM

Post a comment

Comments are moderated and will not appear until the moderator has approved them.

If you have a TypeKey or TypePad account, please Sign in

April 02, 2015


What Seems to Be Holding Back Labor Productivity Growth, and Why It Matters

The Atlanta Fed recently released its online Annual Report. In his video introduction to the report, President Dennis Lockhart explained that the economic growth we have experienced in recent years has been driven much more by growth in hours worked (primarily due to employment growth) than by growth in the output produced per hour worked (so-called average labor productivity). For example, over the past three years, business sector output growth averaged close to 3 percent a year. Labor productivity growth accounted for only about 0.75 percentage point of these output gains. The rest was due primarily to growth in employment.

The recent performance of labor productivity stands in stark contrast to historical experience. Business sector labor productivity growth averaged 1.4 percent over the past 10 years. This is well below the labor productivity gains of 3 percent a year experienced during the information technology productivity boom from the mid-1990s through the mid-2000s.

John Fernald and collaborators at the San Francisco Fed have decomposed labor productivity growth into some economically relevant components. The decomposition can be used to provide some insight into why labor productivity growth has been so low recently. The four factors in the decomposition are:

  • Changes in the composition of the workforce (labor quality), weighted by labor's share of income
  • Changes in the amount and type of capital per hour that workers have to use (capital deepening), weighted by capital's share of income
  • Changes in the cyclical intensity of utilization of labor and capital resources (utilization)
  • Everything else—all the drivers of labor productivity growth that are not embodied in the other factors. This component is often called total factor productivity.

The chart below displays the decomposition of labor productivity for various time periods. The bar at the far right is for the last three years (the next bar is for the past 10 years). The colored segments in each bar sum to average annual labor productivity growth for each time period.

Decomposition of Business Sector Labor Productivity Growth

Taken at face value, the chart suggests that a primary reason for the sluggish average labor productivity growth we have seen over the past three years is that capital spending growth has not kept up with growth in hours worked—a reduction in capital deepening. Declining capital deepening is highly unusual.

Do we think this sluggishness will persist? No. In our medium-term outlook, we at the Atlanta Fed expect that factors that have held down labor productivity growth (particularly relatively weak capital spending) will dissipate as confidence in the economy improves further and firms increase the pace of investment spending, including on various types of equipment and intellectual capital. We currently anticipate that the trend in business sector labor productivity growth will improve to a level of about 2 percent a year, midway between the current pace and the pace experienced during the 1995–2004 period of strong productivity gains. That is, we are not productivity pessimists. Time will tell, of course.

Clearly, this optimistic labor productivity outlook is not without risk. For one thing, we have been somewhat surprised that labor productivity has remained so low for so long during the economic recovery. Moreover, the first quarter data don't suggest that a turning point has occurred. Gross domestic product (GDP) in the first quarter is likely to come in on the weak side (the latest GDPNow tracking estimate here is currently signaling essentially no GDP growth in the first quarter), whereas employment growth is likely to be quite robust (for example, the ADP employment report suggested solid employment gains). As a result, we anticipate another weak reading for labor productivity in the first quarter. We are not taking this as refutation of our medium-term outlook.

Continued weakness in labor productivity would raise many important questions about the outlook for both economic growth and wage and price inflation. For example, our forecast of stronger productivity gains also implies a similarly sized pickup in hourly wage growth. To see this, note that unit labor cost (the wage bill per unit of output) is thought to be an important factor in business pricing decisions. The following chart shows a decomposition of average growth in business sector unit labor costs into the part due to nominal hourly wage growth and the part offset by labor productivity growth:

Decomposition of Unit Labor Cost Growth

The 1975–84 period experienced high unit labor costs because labor productivity growth didn't keep up with wage growth. In contrast, the relatively low and stable average unit labor cost growth we have experienced since the 1980s has been due to wage growth largely offset by gains in labor productivity. Our forecast of stronger labor productivity growth implies faster wage growth as well. That said, a rise in wage growth absent a pickup in labor productivity growth poses an upside risk to our inflation outlook.

Of course, the data on productivity and its components are estimates. It is possible that the data are not accurately reflecting reality in real time. For example, colleagues at the Board of Governors suggest that measurement issues associated with the price of high-tech equipment may be causing business investment to be somewhat understated. That is, capital deepening may not be as weak as the current data indicate. In a follow-up blog to this one, my Atlanta Fed colleague Patrick Higgins will explore the possibility that the weak labor productivity we have recently experienced is likely to be revised away with subsequent revisions to GDP and hours data.


April 2, 2015 in Employment, Forecasts, GDP, Productivity, Unemployment | Permalink

TrackBack

TrackBack URL for this entry:
http://www.typepad.com/services/trackback/6a00d8341c834f53ef01b7c7712209970b

Listed below are links to blogs that reference What Seems to Be Holding Back Labor Productivity Growth, and Why It Matters:

Comments

Post a comment

Comments are moderated and will not appear until the moderator has approved them.

If you have a TypeKey or TypePad account, please Sign in

March 05, 2015


Could Reduced Drilling Also Reduce GDP Growth?

Five or six times each month, the Atlanta Fed posts a "nowcast" of real gross domestic product (GDP) growth from the Atlanta Fed's GDPNow model. The most recent model nowcast for first-quarter real GDP growth is provided in table 1 below alongside alternative forecasts from the Philadelphia Fed's quarterly Survey of Professional Forecasters (SPF) and the CNBC/Moody's Analytics Rapid Update survey. The Atlanta Fed's nowcast of 1.2 percent growth is considerably lower than both the SPF forecast (2.7 percent) and the Rapid Update forecast (2.6 percent).

Table 1: Nowcasts of 2015:Q1 real GDP growth

Why the discrepancy? The less frequently updated SPF forecast (now nearly a month old) has the advantage of including forecasts of major subcomponents of GDP. Comparing the subcomponent forecasts from the SPF with those from the GDPNow model reveals that no single factor explains the difference between the two GDP forecasts. The GDPNow model forecasts of the real growth rates of consumer spending, residential investment, and government spending are all somewhat weaker than the SPF forecasts. Together these subcomponents account for just under 1.0 percentage point of the 1.5 percentage point difference between the GDP growth forecasts.

Most of the remaining difference in the GDP forecasts is the result of the different forecasts for real business fixed investment (BFI) growth. The GDPNow model projects a sharp 13.5 percent falloff in nonresidential structures investment that largely offsets the reasonably strong increases in the other two subcomponents of BFI. Much of this decline is due to petroleum and natural gas well exploration; a component which accounts for almost 30 percent of nonresidential structures investment and looks like it will fall sharply this quarter. The remainder of this blog entry "drills" down into this portion of the nonresidential structures forecast (pun intended). (A related recent analysis using the GDPNow model has been done here).

A December macroblog post I coauthored with Atlanta Fed research director Dave Altig presented some statistical evidence that in the past, large declines in oil prices have had a pronounced negative effect on oil and mining investment. Chart 1 below shows that history appears to be repeating itself.

Chart 1: Indicators of drilling activity and oil prices

The Baker Hughes weekly series on active rotary rigs for oil and natural gas wells has plummeted from 1,929 for the week ending November 21 to 1,267 for the week ending February 27. The Baker Hughes data are the monthly source series for drilling oil and gas wells industrial production (IP) and one of the two quarterly source series for the U.S. Bureau of Economic Analysis's (BEA) estimate of drilling investment (for example, petroleum and natural gas exploration and wells). The other source series for drilling investment is footage drilled completions from the American Petroleum Institute, released about a week before the BEA publishes its initial estimate of GDP.

Chart 2: Indicators of oil drilling and natural gas exploration

Chart 2 displays three of these indicators of drilling activity. The data are plotted in logarithms so that one-quarter changes approximate quarterly growth rates. The chart makes clear that the changes in each of the three series are highly correlated, suggesting that the Baker Hughes rig count can be used to forecast the other series. The Baker Hughes data end on February 27, and we can (perhaps conservatively) extrapolate it forward by assuming it remains at its last reading of 1,267 active rigs through the end of the quarter. We can then use a simple regression to forecast the February and March readings of drilling oil and gas wells IP. Another simple regression with the IP drilling series and its first-quarter forecast allows us to project first-quarter real drilling investment. The forecasts, shown as dashed lines in chart 2, imply real drilling investment will decline at an annual rate of 52 percent in the first quarter. This decline is steeper than the current GDPNow model forecast of a 36 percent decline as the latter does not account for the decline in active rotary rigs in February.

A 52 percent decline in real nonresidential investment in drilling would likely subtract about 0.5 percentage point off of first-quarter real GDP growth. However, it's important to keep in mind that a lot of first quarter source data for GDP are not yet available. In particular, almost none of the source data for the volatile net exports and inventory investment GDP subcomponents have been released. So considerable uncertainty still surrounds real GDP growth this quarter.


March 5, 2015 in Energy, Forecasts, GDP | Permalink

TrackBack

TrackBack URL for this entry:
http://www.typepad.com/services/trackback/6a00d8341c834f53ef01b8d0e3a0ba970c

Listed below are links to blogs that reference Could Reduced Drilling Also Reduce GDP Growth?:

Comments

Post a comment

Comments are moderated and will not appear until the moderator has approved them.

If you have a TypeKey or TypePad account, please Sign in

January 09, 2015


Gauging Inflation Expectations with Surveys, Part 3: Do Firms Know What They Don’t Know?

In the previous two macroblog posts, we introduced you to the inflation expectations of firms and argued that the question you ask matters a lot. In this week's final post, we examine another important dimension of our data: inflation uncertainty, a topic of some deliberation at the last Federal Open Market Committee meeting (according to the recently released minutes).

Survey data typically measure only the inflation expectation of a respondent, not the certainty surrounding that prediction. As a result, survey-based measures often use the disagreement among respondents as a proxy for uncertainty, but as Rob Rich, Joe Tracy, and Matt Ploenzke at the New York Fed caution in this recent blog post, you probably shouldn't do this.

Because we derive business inflation expectations from the probabilities that each firm assigns to various unit cost outcomes, we can measure the inflation uncertainty of a respondent directly. And that allows us to investigate whether uncertainty plays a role in the accuracy of firm inflation predictions. We wanted to know: Do firms know what they don't know?

The following table, adapted from our recent working paper, reports the accuracy of a business inflation forecast relative to the firm's inflation uncertainty at the time the forecast was made. We first compare the prediction accuracy of firms who have a larger-than-average degree of prediction uncertainty against those with less-than-average uncertainty. We also compare the most uncertain firms with the least uncertain firms.

On average, firms provide relatively accurate, unbiased assessments of their future unit cost changes. But the results also clearly support the conclusion that more uncertain respondents tend to be significantly less accurate inflation forecasters.

Maybe this result doesn't strike you as mind-blowing. Wouldn't you expect firms with the greatest inflation uncertainty to make the least accurate inflation predictions? We would, too. But isn't it refreshing to know that business decision-makers know when they are making decisions under uncertainty? And we also think that monitoring how certain respondents are about their inflation expectation, in addition to whether the average expectation for the group has changed, should prove useful when evaluating how well inflation expectations are anchored. If you think so too, you can monitor both on our website's Inflation Project page.

January 9, 2015 in Business Inflation Expectations, Forecasts, Inflation, Inflation Expectations | Permalink

TrackBack

TrackBack URL for this entry:
http://www.typepad.com/services/trackback/6a00d8341c834f53ef01b7c732566f970b

Listed below are links to blogs that reference Gauging Inflation Expectations with Surveys, Part 3: Do Firms Know What They Don’t Know?:

Comments

Post a comment

Comments are moderated and will not appear until the moderator has approved them.

If you have a TypeKey or TypePad account, please Sign in

January 07, 2015


Gauging Inflation Expectations with Surveys, Part 2: The Question You Ask Matters—A Lot

In our previous macroblog post, we discussed the inflation expectations of firms and observed that—while on average these expectations look similar to that of professional forecasters—they reveal considerably more variation of opinion. Further, the inflation expectations of firms look very different from what we see in the household survey of inflation expectations.

The usual focal point when trying to explain measurement differences among surveys of inflation expectations is the respondent, or who is taking the survey. In the previous macroblog post, we noted that some researchers have indicated that not all households are equally informed about inflation trends and that their expectations are somehow biased by this ignorance. For example, Christopher Carroll over at Johns Hopkins suggests that households update their inflation expectations through the news, and some may only infrequently read the press. Another example comes from a group of researchers at the New York Fed and Carnegie Mellon They've suggested that less financially literate households tend to persistently have the highest inflation expectations.

But what these and related research assume is that whom you ask the question of is of primary significance. Could it be that it's the question being asked that accounts for such disagreement among the surveys?

We know, for example, that professional forecasters are asked to predict a particular inflation statistic, while households are simply asked about the behavior of "prices in general" and prices "on the average." To an economist, these amount to pretty much the same thing. But are they the same thing in the minds of non-economists?

You may be surprised, but the answer is no (as a recent Atlanta Fed working paper discussed). When we asked our panel of firms to predict by how much "prices will change overall in the economy"—essentially the same question the University of Michigan asks households—business leaders make the same prediction we see in the survey of households: Their predictions seem high relative to the trend in the inflation data, and the range of opinion among businesses on where prices "overall in the economy" are headed is really, really wide (see the table).

150107a

But what if we ask businesses to predict a particular inflation statistic, as the Philly Fed asks professional forecasters to do? We did that, too. And you know what? Not only did a majority of our panelists (about two-thirds) say they were "familiar" with the inflation statistic, but their predictions looked remarkably similar to that of professional forecasters (see the table).

150107b

So when we ask firms to answer the same question asked of professional forecasters, we got back something that was very comparable to responses given by professional forecasters. But when you ask firms the same question typically asked of households, we got back responses that looked very much like what households report.

Moreover, we dug through the office file cabinets, remembering a related table adapted from a joint project between the Cleveland Fed and the Ohio State University that was highlighted in a 2001 Cleveland Fed Economic Commentary. In August 2001, a group of Ohio households were asked to provide their perception of how much the Consumer Price Index (CPI) had increased over the last 12 months, and we compared it with how much they thought "prices" had risen over the past 12 months.

The households reported that the CPI had risen 3 percent—nearly identical to what the CPI actually rose over the period (2.7 percent). However, in responding to the vaguely worded notion of "prices," the average response was nearly 7 percent (see the table). So again, it seems that the loosely defined concept of "prices" is eliciting a response that looks nothing like what economists would call inflation.

150107c

So it turns out that the question you ask matters—a lot—more so, evidently, than to whom you ask the question. What's the right question to ask? We think it's the question most relevant to the decisions facing the person you are asking. In the case of firms (and others, we suspect), what's most relevant are the costs they think they are likely to face in the coming year. What is unlikely to be top-of-mind for business decision makers is the future behavior of an official inflation statistic or their thoughts on some ambiguous concept of general prices.

In the next macroblog post, we'll dig even deeper into the data.

photo of Mike Bryan
By Mike Bryan, vice president and senior economist,
photo of Brent Meyer
Brent Meyer, economist, and
photo of Nicholas Parker
Nicholas Parker, economic policy specialist, all in the Atlanta Fed's research department

January 7, 2015 in Business Inflation Expectations, Forecasts, Inflation, Inflation Expectations | Permalink

TrackBack

TrackBack URL for this entry:
http://www.typepad.com/services/trackback/6a00d8341c834f53ef01b8d0b9f07a970c

Listed below are links to blogs that reference Gauging Inflation Expectations with Surveys, Part 2: The Question You Ask Matters—A Lot:

Comments

Post a comment

Comments are moderated and will not appear until the moderator has approved them.

If you have a TypeKey or TypePad account, please Sign in

January 05, 2015


Gauging Inflation Expectations with Surveys, Part 1: The Perspective of Firms

Inflation expectations matter. Just ask any central banker (such as the Federal Reserve, the European Central Bank, the Bank of England, or the Bank of Japan).

Central bankers measure inflation expectations in more than a few ways, which is another way of saying no measure of inflation expectations is entirely persuasive.

Survey data on inflation expectations are especially hard to interpret. Surveys of professional economists, such as the Federal Reserve Bank of Philadelphia's Survey of Professional Forecasters, reveal inflation expectations that, over time, track fairly close to the trend in the officially reported inflation data. But the inflation predictions by professional forecasters are extraordinarily similar and call into question whether they represent the broader population.

The inflation surveys of households, however, reveal a remarkably wide range of opinion on future inflation compared to those of professional forecasters. Really, really wide. For example, in any particular month, 13 percent of the University of Michigan's survey of households predicts year-ahead inflation to be more than 10 percent, an annual inflation rate not seen since October 1981. Even in the aggregate, the inflation predictions of households persistently track much higher than the officially reported inflation data (see the chart). These and other curious patterns in the household survey data call into question whether these data really represent the inflation predictions on which households act.

Household Expectations Overshoot Inflation Measures

Even if you're unfamiliar with the literature on this subject, the above observations may not strike you as particularly hard to believe. Economists are, presumably, expert on inflation, while households experience inflation from their own unique—some would suggest even uninformed—perspectives.

We have yet another survey of inflation expectations, one from the perspective of businesses leaders. We think this may be an especially useful perspective on future inflation since business leaders, after all, are the price setters. Our survey has been in the field for a little more than three years now—just long enough, we think, to step back and take stock of what business inflation expectations look like, especially in comparison to the other survey data.

Our initial impressions are reported in a recent Atlanta Fed working paper, and the next few macroblog posts will share some of our favorite observations from this research.

We have been asking firms to assign probabilities to possible changes in their unit costs over the year ahead. From these probabilities, we compute how much firms think their costs are going to change in the coming year and how certain they are of that change (see the table). What we find is that the inflation expectations of firms, on average, look something like the inflation predictions of professional forecasters, but not so much like the predictions of households.

Summary Descriptive Statistics: Inflation Expectations (Oct. 2011 - Dec. 2014)

But we also find that there is a significant range of opinion among firms, more so than the range of opinions that forecasting professionals express. Some of the variation among firms appears to be related to their particular industries and are broadly correlated with the uneven cost pressures shown in similar industrial breakdowns of the Producer Price Index from the U.S. Bureau of Labor Statistics (see the table).

Own Unit Cost Expectations by Industry and Firm Size (Oct. 2011 - Dec. 2014)
(enlarge)

So what we have now are three surveys of inflation expectations, each yielding very different inflation predictions. What accounts for the variation we see across the surveys? Our survey allows us to experiment a bit, which was one of the motivations for conducting it. We didn't just want to measure the inflation expectations of firms; we wanted to learn about those expectations. In the next few macroblog posts, we'll tell you a few of the things we've learned. And we think some of our initial findings will surprise you.


January 5, 2015 in Business Inflation Expectations, Forecasts, Inflation, Inflation Expectations | Permalink

TrackBack

TrackBack URL for this entry:
http://www.typepad.com/services/trackback/6a00d8341c834f53ef01bb07d284c6970d

Listed below are links to blogs that reference Gauging Inflation Expectations with Surveys, Part 1: The Perspective of Firms:

Comments

Post a comment

Comments are moderated and will not appear until the moderator has approved them.

If you have a TypeKey or TypePad account, please Sign in

December 04, 2014


The Long and Short of Falling Energy Prices

Earlier this week, The Wall Street Journal asked the $1.36 trillion question: Lower Gas Prices: How Big A Boost for the Economy?

We will take that as a stand-in for the more general question of how much the U.S. economy stands to gain from a drop in energy prices more generally. (The "$1.36 trillion" refers to an estimate of energy spending by the U.S. population in 2012.)

It's nice to be contemplating a question that amounts to pondering just how good a good situation can get. But, as the Journal blog item suggests, the rising profile of the United States as an energy producer is making the answer to this question more complicated than usual.

The data shown in chart 1 got our attention:

141204a

As a fraction of total investment on nonresidential structures, spending on mining exploration, shafts, and wells has been running near its 50-year high over the course of the current recovery. As a fraction of total business investment in equipment and structures, the current contribution of the mining and oil sector is higher than any time since the early 1980s (and generally much higher than most periods during the last half century).

In a recent paper, economists Soren Andersen, Ryan Kellogg, and Stephen Salant explain why this matters:

We show that crude oil production from existing wells in Texas does not respond to current or expected future oil prices... In contrast, the drilling of new wells exhibits a strong price response...

In short, the investment piece really matters.

We've done our own statistical investigations, asking the following question: What is the estimated impact of energy price shocks in the second half of this year on investment, consumer spending, and gross domestic product (GDP)?

If you are interested, you can find the details of the statistical model here. But here is the bottom line: the estimated impact of energy price shocks is a very sizeable decline in investment in the mining and oil subsector relative to baseline and, more importantly, an extended period of flat to slightly negative growth in overall investment relative to baseline (see chart 2).

141204b

In our simulations, the "baseline" is the scenario without the ex-post energy price shocks occurring in the third and fourth quarters of 2014, while the "alternative" scenario incorporates the (estimated) actual energy price shocks that have occurred in the second half of this year. These shocks lead to a cumulative 8 percent drop in consumer energy prices and a 6 percent drop in producer energy prices by the fourth quarter of this year relative to baseline. By the fourth quarter of 2017, 2 percentage points of these respective energy price declines are reversed. In chart 2 above, each colored line represents the percentage point difference between the "alternative" scenario and the "baseline" scenario.

As for consumption and GDP? Like overall investment, there is a short-run drag before the longer-term boom, as chart 3 shows:

141204c

So is the recent decline in energy prices good news for the U.S. economy? Right now our answer is yes, probably—but we may have to be patient.

Note: We have updated this post since it was originally released, clarifying a sentence in the paragraph above chart 2 and providing the data for the charts. The original sentence stated: But here is the bottom line: the estimated impact of energy price shocks is a very sizeable decline in investment in the mining and oil subsector and, more importantly, an extended period of flat to slightly negative growth in overall investment (see chart 2).


December 4, 2014 in Energy, Forecasts, GDP | Permalink

TrackBack

TrackBack URL for this entry:
http://www.typepad.com/services/trackback/6a00d8341c834f53ef01bb07bc955f970d

Listed below are links to blogs that reference The Long and Short of Falling Energy Prices:

Comments

Post a comment

Comments are moderated and will not appear until the moderator has approved them.

If you have a TypeKey or TypePad account, please Sign in

November 04, 2014


Data Dependence and Liftoff in the Federal Funds Rate

When asked "at which upcoming meeting do you think the FOMC [Federal Open Market Committee] will FIRST HIKE its target for the federal funds rate," 46 percent of the October Blue Chip Financial Forecasts panelists predicted that "liftoff" would occur at the June 2015 meeting, and 83 percent chose liftoff at one of the four scheduled meetings in the second and third quarters of next year.

Of course, this result does not imply that there is an 83 percent chance of liftoff occurring in the middle two quarters of next year. Respondents to the New York Fed's most recent Primary Dealer Survey put this liftoff probability for the middle two quarters of 2015 at only 51 percent. This more relatively certain forecast horizon for mid-2015 is consistent with the "data-dependence principle" that Chair Yellen mentioned at her September 17 press conference. The idea of data dependence is captured in this excerpt from the statement following the October 28–29 FOMC meeting:

[I]f incoming information indicates faster progress toward the Committee's employment and inflation objectives than the Committee now expects, then increases in the target range for the federal funds rate are likely to occur sooner than currently anticipated. Conversely, if progress proves slower than expected, then increases in the target range are likely to occur later than currently anticipated.

If the timing of liftoff is indeed data dependent, a natural extension is to gauge the likely "liftoff reaction function." In the current zero-lower bound (ZLB) environment, researchers at the University of North Carolina and the St. Louis Fed have analyzed monetary policy using shadow fed funds rates, shown in figure 1 below, estimated by Wu and Xia (2014) and Leo Krippner.

Unlike the standard fed funds rate, a shadow rate can be negative at the ZLB. The researchers found that the shadow rates, particularly Krippner's, act as fairly good proxies for monetary policy in the post-2008 ZLB period. Krippner also produces an expected time to liftoff, estimated from his model, shown in figure 1 above. His model's liftoff of December 2015 is six months after the most likely liftoff month identified by the aforementioned Blue Chip survey.

I included Krippner's shadow rate (spliced with the standard fed funds rate prior to December 2008) in a monthly Bayesian vector autoregression alongside the six other variables shown in figure 2 below.

The model assumes that the Fed cannot see contemporaneous values of the variables when setting the spliced policy—that is, the fed funds/shadow rate. This assumption is plausible given the approximately one-month lag in economic release dates. The baseline path assumes (and mechanically generates) liftoff in June 2015 with outcomes for the other variables, shown by the black lines, that roughly coincide with professional forecasts.

The alternative scenarios span the range of eight possible outcomes for low inflation/baseline inflation/high inflation and low growth/baseline growth/high growth in the figures above. For example, in figure 2 above, the high growth/low inflation scenario coincides with the green lines in the top three charts and the red lines in the bottom three charts. Forecasts for the spliced policy rate are conditional on the various growth/inflation scenarios, and "liftoff" in each scenario occurs when the spliced policy rate rises above the midpoint of the current target range for the funds rate (12.5 basis points).

The outcomes are shown in figure 3 below. At one extreme—high growth/high inflation—liftoff occurs in March 2015. At the other—low growth/low inflation—liftoff occurs beyond December 2015.

One should not interpret these projections too literally; the model uses a much narrower set of variables than the FOMC considers. Nonetheless, these scenarios illustrate that the model's forecasted liftoffs in the spliced policy rate are indeed consistent with the data-dependence principle.

Photo of Pat HigginsBy Pat Higgins, senior economist in the Atlanta Fed's research department

November 4, 2014 in Economics, Employment, Federal Reserve and Monetary Policy, Forecasts, Inflation, Monetary Policy | Permalink

TrackBack

TrackBack URL for this entry:
http://www.typepad.com/services/trackback/6a00d8341c834f53ef01b7c7003c6e970b

Listed below are links to blogs that reference Data Dependence and Liftoff in the Federal Funds Rate:

Comments

Post a comment

Comments are moderated and will not appear until the moderator has approved them.

If you have a TypeKey or TypePad account, please Sign in

September 29, 2014


On Bogs and Dots

Consider this scenario. You travel out of town to meet up with an old friend. Your hotel is walking distance to the appointed meeting place, across a large grassy field with which you are unfamiliar.

With good conditions, the walk is about 30 minutes but, to you, the quality of the terrain is not so certain. Though nobody seems to be able to tell you for sure, you believe that there is a 50-50 chance that the field is a bog, intermittently dotted with somewhat treacherous swampy traps. Though you believe you can reach your destination in about 30 minutes, the better part of wisdom is to go it slow. You accordingly allot double the time for traversing the field to your destination.

During your travels, of course, you will learn something about the nature of the field, and this discovery may alter your calculation about your arrival time. If you discover that you are indeed crossing a bog, you will correspondingly slow your gait and increase the estimated time to the other side. Or you may find that you are in fact on quite solid ground and consequently move up your estimated arrival time. Knowing all of this, you tell your friend to keep his cellphone on, as your final meeting time is going to be data dependent.

Which brings us to the infamous “dots,” ably described by several of our colleagues writing on the New York Fed’s Liberty Street Economics blog:

In January 2012, the FOMC began reporting participants’ FFR [federal funds rate] projections in the Summary of Economic Projections (SEP). Market participants colloquially refer to these projections as “the dots” (see the second chart on page 3 of the September 2014 SEP for an example). In particular, the dispersion of the dots represents disagreement among FOMC [Federal Open Market Committee] members about the future path of the policy rate.

The Liberty Street discussion focuses on why the policy rate paths differ among FOMC participants and across a central tendency of the SEPs and market participants. Quite correctly, in my view, the blog post’s authors draw attention to differences of opinion about the likely course of future economic conditions:

The most apparent reason is that each participant can have a different assessment of economic conditions that might call for different prescriptions for current and future monetary policy.

The Liberty Street post is a good piece, and I endorse every word of it. But there is another type of dispersion in the dots that seems to be the source of some confusion. This question, for example, is from Howard Schneider of Reuters, posed at the press conference held by Chair Yellen following the last FOMC meeting:

So if you would help us, I mean, square the circle a little bit—because having kept the guidance the same, having referred to significant underutilization of labor, having actually pushed GDP projections down a little bit, yet the rate path gets steeper and seems to be consolidating higher—so if it’s data dependent, what accounts for the faster projections on rate increases if the data aren’t moving in that direction?

The Chair’s response emphasized the modest nature of the changes, and how they might reflect modest improvements in certain aspects of the data. That response is certainly correct, but there is another point worth emphasizing: It is completely possible, and completely coherent, for the same individual to submit a “dot” with an earlier (or later) liftoff date of the policy rate, or a steeper (or flatter) path of the rate after liftoff, even though their submitted forecasts for GDP growth, inflation, and the unemployment rate have not changed at all.

This claim goes beyond the mere possibility that GDP, inflation, and unemployment (as officially defined) may not be sufficiently complete summaries of the economic conditions a policymaker might be concerned with.

The explanation lies in the metaphor of the bog. The estimated time of arrival to a destination—policy liftoff, for example—depends critically on the certainty with which the policymaker can assess the economic landscape. An adjustment to policy can, and should, proceed more quickly if the ground underfoot feels relatively solid. But if the terrain remains unfamiliar, and the possibility of falling into the swamp can’t be ruled out with any degree of confidence...well, a wise person moves just a bit more slowly.

Of course, as noted, once you begin to travel across the field and gain confidence that you are actually on terra firma, you can pick up the pace and adjust the estimated time of arrival accordingly.

To put all of this a bit more formally, an individual FOMC participant’s “reaction function”—the implicit rule that connects policy decisions to economic conditions—may not depend on just the numbers that that individual writes down for inflation, unemployment, or whatever. It might well—and in the case of our thinking here at the Atlanta Fed, it does—depend on the confidence with which those numbers are held.

For us, anyway, that confidence is growing. Don’t take that from me. Take it from Atlanta Fed President Lockhart, who said in a recent speech:

I'll close with this thought: there are always risks around a projection of any path forward. There is always considerable uncertainty. Given what I see today, I'm pretty confident in a medium-term outlook of continued moderate growth around 3 percent per annum accompanied by a substantial closing of the employment and inflation gaps. In general, I'm more confident today than a year ago.

Viewed in this light, the puzzle of moving dots without moving point estimates for economic conditions really shouldn’t be much of a puzzle at all.

Photo of Dave AltigBy Dave Altig, executive vice president and research director of the Atlanta Fed


September 29, 2014 in Economic conditions, Economics, Federal Reserve and Monetary Policy, Forecasts | Permalink

TrackBack

TrackBack URL for this entry:
http://www.typepad.com/services/trackback/6a00d8341c834f53ef01b7c6e99172970b

Listed below are links to blogs that reference On Bogs and Dots:

Comments

Post a comment

Comments are moderated and will not appear until the moderator has approved them.

If you have a TypeKey or TypePad account, please Sign in

Google Search



Recent Posts


May 2015


Sun Mon Tue Wed Thu Fri Sat
          1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31            

Archives


Categories


Powered by TypePad