About


The Atlanta Fed's macroblog provides commentary and analysis on economic topics including monetary policy, macroeconomic developments, inflation, labor economics, and financial issues.

Authors for macroblog are Dave Altig, John Robertson, and other Atlanta Fed economists and researchers.


February 13, 2017


Does a High-Pressure Labor Market Bring Long-Term Benefits?

Though it ticked up slightly in January , the U.S. unemployment rate is arguably at, or near, its long-run sustainable level. At least that is the apparent judgment of Federal Open Market Committee participants, the Congressional Budget Office (CBO), and others. Not surprisingly, this consensus is leading to some speculation that a combination of policy and the economy's natural momentum may result in unemployment rates moving well below sustainable levels—a circumstance some have referred to as a "high-pressure" economy.

Though lower-than-normal unemployment rates may have benefits, at least in the short-term, it is generally recognized that these circumstances also carry risks. Specifically, if the demand for resources (including labor) expands beyond the economy's capacity to supply them, the risk of undesirable inflation, financial imbalances, and other negative developments may grow—a point that Boston Fed President Eric Rosengren emphasized late last year. In recent history, high-pressure episodes have generally ended with the economy entering a recession; soft landings appear to be elusive.

That said, some have outlined potential labor market benefits to individual workers during high-pressure episodes—including higher labor force attachment, higher wages, and better job matches (see for example, here, here and here ). But could these types of labor market benefits persist and actually improve a worker's ability to also withstand an economic downturn?

To investigate this possibility, I ask the following question: Do high-pressure economies at the state level reduce the probability that a worker enters into unemployment during a subsequent downturn?

The details of my approach, using cross-sectional data from the monthly Current Population Survey, can be found in this appendix .

The following three charts illustrate the moderating impact a high-pressure economy can have on the probability of unemployment during a recession for various demographic groups. Chart 1 shows the impact on different age groups. The data tell us that the probability of unemployment for 18- to 34-year olds is 3.2 percentage points higher during recessions than during expansions, relative to how much higher the probability of unemployment is during recessions for 55- to 64-year olds (the excluded age group). This estimate is an average across all recessions between 1980 and 2015. Those who are 45- to 54-years old have only a modestly higher probability of unemployment (0.4 of a percentage point) during recessions than 55- to 64-year olds.

However, we also see from chart 1 that the effect of the recession on each age group is moderated by the state's high-pressure economy. Specifically, for each average percentage point by which the state's unemployment rate fell below the state's natural rate of unemployment prior to the recession, the probability of unemployment facing 18- to 34-year olds falls by 2.4 percentage points. Simply put, the hotter the state's prerecession economy, the lower the impact of the recession on workers' probability of unemployment.

We see the same impact across education groups in chart 2. Whereas those with some college face a probability of unemployment during a recession that is 0.7 percentage points higher than that of a college graduate, a prerecessionary high-pressure episode just 1 percentage point higher will wipe out the disadvantage that those with some college face during a recession relative to those with a college degree.

Chart 3 shows that black non-Hispanics experience even greater benefits from a high-pressure economy. A high-pressure period just 1 percentage point greater prior to a recession more than erases the average impact of the recession, relative to white non-Hispanics. (Note that these results are averaged across all recessions since 1980 and hence don't say anything about the labor market outcomes during any particular recession.)

The evidence I provide here suggests that a high-pressure economy may have some longer-term benefits in terms of improving labor market outcomes during economic downturns. If this is indeed the case, understanding how and why will be an important step in assessing the risk/reward calculus of high-pressure periods.

February 13, 2017 in Employment, Labor Markets, Unemployment, Wage Growth | Permalink

Comments

Post a comment

Comments are moderated and will not appear until the moderator has approved them.

If you have a TypeKey or TypePad account, please Sign in

February 06, 2017


Examining Changes in Labor Force Participation

The Labor Department announced on Friday that January's unemployment rate was 4.8 percent, only 10 basis points below the level in January 2016. You can be forgiven if looking at a graph of the unemployment rate since 2007 makes you think of a roller coaster, because it showed a very steep climb, followed by a swift decline. From a distance, it may seem like the car's descent stopped about a year ago and has merely been bumping around a bit as it approaches the elevation of the platform.

But the unemployment rate alone does not fully account for improvement in the labor market. During the past three years, the labor force participation (LFP) rate has become a particularly important metric to look at. The overall share of the population that is working or actively seeking work has been essentially flat during this period, which is striking because there is a powerful demographic trend—an aging population—that is pulling it down with tremendous force.

Many factors are behind LFP's relative flatness, some of which undoubtedly relate to the labor market's strength. The opportunities available in the labor market affect an individual's decision to enter or leave the labor force. For example, it can affect when a person chooses to retire, enroll in college, apply for disability insurance, or stay home to care for family instead of looking for employment.

On a quarterly basis we update our web page with analysis of how these reasons for not being in the labor market have changed during the past year, and we also look at the extent to which these changes affect the overall LFP rate. Between the fourth quarter of 2015 and the same period in 2016, the LFP rate rose 0.14 percentage points (not seasonally adjusted). The chart below breaks out this increase and shows how much the various reasons for nonparticipation account for the increase (holding the age composition of the population fixed) versus the downward pressure exerted by an aging population.

Let's briefly look at the relative contributions to the change in labor force participation in more detail:

Aging of the population: During the last year, the aging population was the only significant factor continuing to depress the LFP rate. In line with this factor's contribution from previous years, it accounted for about 0.15 percentage points of the decline in the LFP rate.

Retirement: Retirement rates ticked down over the year, resuming a trend that had stalled in the past few years. Later retirement was the largest influence on LFP in the past year and completely offset the effect of aging population, boosting the rate by 0.15 points.

Shadow labor force: The share of the population not technically counted as "unemployed" because they are not actively searching but say they want a job fell slightly over the past year. This decline boosted the LFP rate by 0.04 percentage points. (A decline in this category is usually associated with a strengthening labor market.)

Health problems: The share of the population who said they are too chronically ill or disabled to work declined for the second year in a row, reversing the trend of the prior eight years. This decline put upward pressure on LFP (0.04 percentage points) and could partly be a reflection of a stronger job market with more opportunities for those with disabilities (see this report  from the U.S. Bureau of Labor Statistics for more information).

Rising education: The share of the population not in the labor market because they are in school increased slightly, lowering the LFP rate by 0.03 percentage points. School enrollments rates rose for decades and accelerated during the last recession. The small contribution of schooling to the change in the LFP rate during the past year likely brings it closer to alignment with the long-term trend.

Family responsibilities: The share of the population not participating in the labor force because of family responsibilities declined during the last year, boosting the LFP rate by 0.13 percentage points.

An interactive chart on our website allows users to choose their own time period for comparison for all those 16 years old and above, those 25–54 years old, as well as for men and women separately. You can see how various factors have contributed to that roller coaster effect—strap yourself in!

February 6, 2017 in Employment, Labor Markets | Permalink

Comments

Great info. Now we know what to share online when Trump says we have a sea of jobless Americans. Keep up the good work!

Posted by: David Doney | February 06, 2017 at 05:09 PM

Post a comment

Comments are moderated and will not appear until the moderator has approved them.

If you have a TypeKey or TypePad account, please Sign in

January 23, 2017


Wage Growth Tracker: Every Which Way (and Up)

As measured by the Atlanta Fed's Wage Growth Tracker, the typical wage increase of a U.S. worker averaged 3.5 percent in 2016. This is up from 3.1 percent in 2015 and almost twice the low of 1.8 percent recorded in 2010. As noted in previous macroblog posts, the Wage Growth Tracker correlates tightly to the unemployment rate. As median wage growth has risen, the unemployment rate declined from an average of 9.6 percent in 2010, to 5.3 percent in 2015, and to 4.8 percent in 2016.

What does this correlation suggest about the Wage Growth Tracker in 2017? Let's start with a forecast of unemployment. Based on the latest Summary of Economic Projections, the central view of Federal Open Market Committee participants is that the unemployment rate will end this year at around 4.5 percent, about 30 basis points below the median participant's estimate of the unemployment rate that is sustainable over the longer run.

With a modest further decline in the unemployment rate, other things equal, we might then also expect to see a modest uptick in the Wage Growth Tracker in 2017. But I think the emphasis here should be on the word modest. Speaking for myself, sustained Wage Growth Tracker readings much above 4 percent in 2017 would begin to worry me, especially without a compensating pickup in the growth of labor productivity, which has been stuck in the 0 to 1 percent range in recent years. Significantly higher wage growth—reflecting a tightening labor market more than larger gains in worker productivity—could make the inflation outlook a bit less sanguine than we currently think. (This macroblog post discussed the connection among productivity growth, wage growth, and inflation.)

Thus far, many firms appear to have been able to keep their labor costs relatively low by replacing or expanding staff with lower-paid workers. (Our colleagues at the San Francisco Fed have written about how changes in the composition of workers can mute changes in total labor costs.) However, it's not clear how long that approach can be sustained. Indeed, it's noteworthy that average wage costs appear to have accelerated recently. For instance, U.S. Bureau of Labor Statistics data  indicate that average hourly earnings in the private sector increased over the year by 2.9 percent in December—the fastest pace since 2009.

We haven't been hearing reports from firms where the typical worker's wage increase in 2017 is expected to be above 4 percent. However, we did get readings for the Wage Growth Tracker pretty close to 4 percent in October and November of last year. As the following chart shows, a sharp increase in women's median wage growth (hitting 4.3 percent in October 2016) drove the overall increase. In contrast, the median wage increase for men was 3.5 percent.

The jump in the relative wage growth of women came as a bit of a surprise. Female wage growth had been generally running below that of men since 2010, and analysis by my colleague Ellie Terry showed that gender-specific factors that are unlikely to change very rapidly explain a fair amount of that lag. Therefore, we suspected that the divergence in wage growth might not be sustainable—a suspicion that proved to be true. Median wage growth for women slowed to 3.5 percent in December, the same growth rate men saw.

Readers who can't get enough Wage Growth Tracker data will be delighted to note that in 2017 we plan on making further enhancements to the tool. These enhancements will include finer cuts by age, education, industry, and hours worked, as well as new cuts by occupation, race, and location. You can stay informed on all Wage Growth Tracker updates by subscribing to our RSS feed  or email updates .

January 23, 2017 in Employment, Labor Markets, Wage Growth | Permalink

Comments

Post a comment

Comments are moderated and will not appear until the moderator has approved them.

If you have a TypeKey or TypePad account, please Sign in

November 28, 2016


Does Lower Pay Mean Smaller Raises?

​​

I've been asked a few questions about the relative wage growth of low-wage versus high-wage individuals that are measured by the Atlanta Fed's Wage Growth Tracker. Do individuals who were relatively lower (or higher) paid also tend to experience lower (or higher) wage growth? If they do, then wage inequality would increase pretty rapidly as low-wage earners get left further and further behind.

The short answer is no. As chart 1 shows, median wage growth is highest for the workers whose pay was relatively low (in the bottom 25 percent of the wage distribution), and lowest for those who were the highest-paid (in the top 25 percent of the wage distribution). Median wage growth is reasonably similar for those whose pay was in the middle 50 percent of the wage distribution.

To understand what's going on, let's look at the construction of a Wage Growth Tracker sample. In simple terms, a person's wage is observed in one month, and then again 12 months later. But relatively low-wage workers are less likely to remain employed (and hence more likely not to have a wage when observed a second time) than other workers. Almost half of workers who are not employed 12 months later come from the lowest 25 percent of the wage distribution. For workers in a relatively low-wage job, a greater share who might otherwise have experienced a declining wage left their employment, resulting in a larger share of wage increases among those who remained employed.

In contrast, relatively high wage earners in the Wage Growth Tracker sample have a remarkably low median wage growth—zero in recent years. They also have a much greater chance of experiencing a wage decline than other workers (see chart 2).

However, getting a complete picture for high-wage individuals in the Current Population Survey is limited by the fact that observations are top-coded (or censored to preserve identifiable individuals' anonymity). For example, weekly earnings higher than $2,885 are currently simply recorded as $2,885. If a person in this circumstance gets a wage increase, it will still be reported as just $2,885, which would make it seem as if wages didn't increase, even if they did.

Top-coding itself has only a relatively small effect on the median wage growth for the whole sample because top-coded earnings aren't that common. But they are a reasonably large share of the upper part of the wage distribution, which makes the median wage growth pretty unrepresentative for people who were relatively high wage earners. In principle, one could try to surmount this problem by estimating the earnings for top-coded workers, but my experience has been that doing so is likely to add more noise than insight.

What about examining a worker's current wage instead of their prior wage? Is the median wage growth also higher for workers who are currently in the lowest part of the wage distribution? No. In fact, they are more likely than others not to have received a pay raise or even to have had the rate of pay reduced. Conversely, someone who is currently in the upper part of the wage distribution is more likely to have received a larger pay raise than other workers. Some workers move up the wage distribution—but not all.

The bottom line is that the point of reference matters a lot when looking at the tails of the wage distribution, and top-coding limits the ability to learn much about the wage growth of high wage earners. But for the middle part of the wage distribution, it doesn't matter so much. The median wage growth of the overall sample is pretty representative of the typical wage growth experience of workers in the heart the wage distribution.

November 28, 2016 in Employment, Labor Markets, Wage Growth | Permalink

Comments

Post a comment

Comments are moderated and will not appear until the moderator has approved them.

If you have a TypeKey or TypePad account, please Sign in

November 15, 2016


Wages Climb Higher, Faster

​​

The Atlanta Fed's Wage Growth Tracker is a three-month average of median growth in the hourly earnings of a sample of wage and salary workers taken from the Current Population Survey. Last month in a macroblog post, I noted that the Wage Growth Tracker reading for September, at 3.6 percent, was close to where it had been hovering since April. However, I also noted that the non-averaged median wage growth for September was at a cyclical high of 4.2 percent, and so it would be interesting to see what the October data revealed. Well, the October data are in, and they do confirm a sizeable uptick in wage growth over the last couple of months. The median wage growth for October was 4.0 percent, which brings the Wage Growth Tracker up to 3.9 percent—a percentage point higher than a year ago, and now the highest level since November 2008.

In addition, nominal wage rigidity, as measured by the fraction of workers reporting no change in their hourly rate of pay from 12 months earlier, declined to 13 percent—the lowest since April 2008.

The rise depicted by the Wage Growth Tracker is consistent with the recent trend in average hourly earnings from the payroll survey (up 2.8 percent from a year earlier in October—the fastest pace since June 2009). This increase is occurring even though the unemployment rate has changed little in recent months and is only 10 basis points lower than a year ago. Perhaps employers are finally catching up to the realities of a low unemployment rate. Larger wage gains may also be behind why we are seeing fewer workers leave the labor force. Labor force participation is some 30 or so basis points higher than it was a year ago, and this is primarily because the flow out of the labor force has slowed.

Note: The Wage Growth Tracker website now contains data for the smoothed and unsmoothed series going back to 1983. Previously, the historical data started in 1997. You will notice gaps in the time series in 1995–96 and 1985–86 because the Census Bureau masked the identifiers used to match individual earnings during those periods.

November 15, 2016 in Employment, Labor Markets, Wage Growth | Permalink

Comments

Post a comment

Comments are moderated and will not appear until the moderator has approved them.

If you have a TypeKey or TypePad account, please Sign in

November 14, 2016


Is There a Gender Wage Growth Gap?

​​

The existence of the "gender wage gap" is well documented. Although the gap in the average level of pay between men and women has narrowed over time, studies conducted in the past few years find that women still tend to make about 20 percent less than men. Researchers estimate that between one half and three quarters of the gap can be accounted for by observable differences between men and women in the workforce such as labor market experience, educational attainment, as well as job characteristics (see here , here, and here). This estimation leaves one quarter to one half of the gap that is the result of other factors. While some pin the remainder on discrimination or unfair hiring practices, others suggest the remaining gap may reflect subtle differences in work preferences, such as women choosing jobs with family-oriented benefit packages or flexible work arrangements.

A related question is whether there are differences between the average wage growth of men and women. Since 2010 the Atlanta Fed's Wage Growth Tracker has revealed a disparity between the pay raises of continuously employed men and women, as depicted in the following chart.

Between 1997 and 2010, wage growth of men and women was about equal. Since 2010 however, a gap has emerged. On average, men have been experiencing about 0.35 percentage points higher median wage growth than women. Can differences in characteristics such as experience and job choice explain this gap?

To answer this question, I aggregated individuals into groups based on their potential labor market experience (0–5 years, 5–9 years, 10–24 years, and 25–48 years) education (degree or no degree) family type (married, whether your spouse works, and whether you have kids); industry (goods versus services) occupation (low, middle, or high skill); sector (public versus private); and if the person switched jobs recently. I then computed the median wage growth for each unique group in each year. Using a statistical technique called a Oaxaca Decomposition, I separated out the difference between men and women's wage growth that can be pinned on differences in the way men and women are distributed among these groups (the "endowment" effect).

The following chart shows median wage growth after removing this endowment effect.

After removing the difference in wage growth that is the result of differences in gender-specific characteristics, wage growth of men and women is much more similar. In particular, these differences appear to almost entirely account for the gap that had emerged after 2009. What explains the gap in wage levels between men and women is still an open question, but this analysis suggests that much of the difference in wage growth through the years has to do with family/job choices and other individual characteristics.

November 14, 2016 in Employment, Labor Markets, Wage Growth | Permalink

Comments

This is a quality report that helpfully improved my understanding of the gender wage gap. Since women make up less of the wage force in proportion to their numbers, is it possible that the average quality of the female work force is higher than the average quality of the male workforce? If so, this would suggest a greater wage differential relative to native ability than is now visible.

Posted by: Marvin McConoughey | November 21, 2016 at 11:27 AM

Post a comment

Comments are moderated and will not appear until the moderator has approved them.

If you have a TypeKey or TypePad account, please Sign in

October 24, 2016


Is Wage Growth Accelerating?

The Atlanta Fed's Wage Growth Tracker came in at 3.6 percent in September, up from 3.3 percent in August and 3.4 percent in July, but the same as the 3.6 percent reading for June. By this measure, there are no obvious signs of an acceleration in wage growth for continuously employed workers during the last few months.

However, the headline wage growth tracker is a three month moving average of each month's median wage growth. Interestingly, for September, the median wage growth (using data that are not averaged, sometimes called "unsmoothed") was 4.2 percent, up from 3.6 percent in August, and the highest since late 2007. This pop in median wage growth can be seen in the following chart, which compares the median wage growth (smoothed using a three-month average) with the unsmoothed monthly median.

Even though this looks like a pretty large increase, the standard error on the difference between the unsmoothed August and September medians is also quite large at 0.5 percentage points. So the 0.6 percentage point difference in medians is not statistically significant—it could just as easily be sampling noise. But it is definitely something to keep an eye on going forward. As noted in a previous macroblog post, the correlation between the unemployment gap and the Wage Growth Tracker suggests that we should be seeing the wage growth tracker level off if the economy is stabilizing at full employment.

October 24, 2016 in Employment, Labor Markets, Wage Growth | Permalink

Comments

Post a comment

Comments are moderated and will not appear until the moderator has approved them.

If you have a TypeKey or TypePad account, please Sign in

October 18, 2016


Unemployment Risk and Unions

A recent paper by the Economic Policy Institute (EPI) argues that increased unionization would have broad economic benefits and, in particular, could help improve the wage stagnation facing many lower-skilled workers. Yet union membership has been declining, down by about 3 million between 1983 and 2015, and membership is down 4.5 million in the private sector. (Union membership in the United States is discussed in this U.S. Bureau of Labor Statistics report and in this database, maintained by Barry Hirsch at Georgia State University.)

The overall membership decline in private-sector unions reflects a combination of lower employment in some traditionally unionized industries such as the steel and auto industries and lower unionization rates within industries. For example, the rate of unionization for goods-producing industries (largely manufacturing and construction) is down from 28 percent to 10 percent, and the rate in service-producing industries has declined from 11 percent to 6 percent. In contrast, union membership in the public sector has increased, mostly as a result of broad unionization among public safety, utility, and education occupations coupled with the fact that employment in these occupations has tended to grow over time.

For goods-producing industries in particular, unionized employment is down by about 4.2 million since 1983, and nonunionized employment is up by around 2.5 million. Many factors may have contributed to this shift away from union membership. A possibility I explore here is the role of wage rigidity. In particular, if union wage contracts prevent employers from adjusting wages in the face of an unexpected decline in output demand, then employers may adjust along the employment margin instead. The monopoly power of unions leads to higher wages for continuously employed union workers but also makes layoffs more frequent.

It is the case that unionized workers tend to earn more than their nonunion counterparts. For 1983 to 2015, I estimate that prime-age union workers in goods-producing industries earn an average of about 25 percent more (on a median hourly basis) than comparable nonunion workers (about 50 percent more in construction and about 10 percent more in manufacturing). In addition, the median wage growth of union workers is less cyclically sensitive. The following chart uses the Atlanta Fed's Wage Growth Tracker data, and it shows the annual median wage growth of continuously employed prime-age workers in goods-producing industries, by union status.

Not only is wage growth among union workers less variable over time as the chart shows, research  has noted that union wages are less dispersed—even controlling for differences in worker characteristics. Joining a union leads to wages that tend to be higher, wages that vary less across workers, and wage growth that responds less to changes in economic conditions.

But what about unemployment risk? Do union workers get laid off at a greater rate than nonunion workers? Using matched data from the Current Population Survey, the following chart shows an estimate of the probability that a prime-age worker in a goods producing industry is unemployed 12 months later, by union status.

The probability of unemployment rises during economic downturns for both union and nonunion workers, but is higher for union workers. The union worker displacement rate reached 13 percent in 2009 versus 8 percent for nonunion workers.

However, recall provisions are often built into collective bargaining agreements, so perhaps looking at the total unemployment flow overstates the permanent job loss risk. To investigate, the following chart shows the likelihood of being on temporary layoff (expected to be recalled within six months) versus indefinite (permanent) layoff.

The likelihood of being recalled by your previous employer is much higher for union than nonunion workers, whereas the incidence of permanent layoff is about the same for both types of worker.

Admittedly, I'm not controlling for all the things about workers and employers that could influence employment and wage outcomes. But taken at face value, it appears that the likelihood of permanent job loss is no greater for union workers in goods-producing industries than for nonunion workers. At the same time, union workers are more likely to experience a spell of temporary unemployment. I view this as some evidence in support of my wage rigidity story, which holds that unionized firms use layoffs more intensively because wages are less flexible (I find that this same result holds if I look at the manufacturing and construction industries separately). However, this mechanism itself isn't able to account for much of the secular decline in union participation. The decline seems to be more about where the jobs are created than where they are lost.

October 18, 2016 in Employment, Labor Markets, Unemployment, Wage Growth | Permalink

Comments

As a buyer, I favor the lower costs often achieved by non-unionized companies. Many other Americans do the same. Thus, the massive shift of manufacturing to overseas non-unionized firms, the decline of unionized private sector employment, and the decreasing influence of unions on public policy. EPI, of course, has its own institutional outlook on economic interpretation.

Posted by: Marvin McConoughey | October 24, 2016 at 01:26 PM

Post a comment

Comments are moderated and will not appear until the moderator has approved them.

If you have a TypeKey or TypePad account, please Sign in

September 30, 2016


A Quick Pay Check: Wage Growth of Full-Time and Part-Time Workers

In the last macroblog post we introduced the new version of the nominal Wage Growth Tracker, which allows a look back as far as 1983. We have also produced various cuts of these data comparable to the ones on the Wage Growth Tracker web page to look at the wage dynamics of various types of workers. One of the data cuts compares the median wage growth of people working full-time and part-time jobs. As we have highlighted previously, the median wage growth of part-time workers slowed by significantly more than full-time workers in the wake of the Great Recession. The extended time series allows us to look back farther to see if this phenomenon was truly unique.

The following chart shows the extended full-time/part-time median wage growth time series at an annual frequency.

Median-nominal-hourly-wage-growth-01

The chart shows that the median wage increase for part-time workers is generally lower than for full-time workers, with the average gap about 1 percentage point. The reason for the presence of a gap is a bit puzzling. Could it be that part-time workers have lower average productivity growth than full-time workers? It is true that a part-time worker in our data set is more likely to lack a college degree than a full-time worker, and the median wage level for part-time workers is lower than for full-time workers. But interestingly, a reasonably systematic wage growth gap still exists after controlling for differences in the education and age of workers. So even highly educated prime-age, part-time workers tend to have lower median wage growth than their full-time counterparts. If it's a productivity story, its subtext is not easily captured by observed differences in education and experience.

Changes in economic conditions might also be playing a role. The wage growth gap exceeded 2 percentage points in the early 1980s and again between 2011 and 2013, both periods of considerable excess slack in the labor market, as we recently discussed here. In fact, in each of 2011, 2012, and 2013, half of the part-time workers in our dataset experienced no increase in their rate of pay at all.

To explore this possibility further, it's useful to separate part-time workers into those who work part-time because of economic conditions (for example, because of slack work conditions at their employer or their inability to find full-time work) from those who work part-time for noneconomic reasons (for example, because they have family responsibilities or because they are also in school). The following chart shows the median wage growth for full-time, voluntary part-time, and involuntary part-time workers.

Median-nominal-hourly-wage-growth-02

Admittedly, there are not that many observations on involuntary part-time workers in our data set. But it does appear that their median wage growth has tended to slow by more after economic downturns than those working part-time for a noneconomic reason—at least prior to the Great Recession. After the last recession, however, the wage growth gap was just about as large for both types of part-time workers. In that sense, the impact of the last recession on the median wage growth of regular part-time workers was quite unusual.

Since 2013, median wage growth for part-time workers has been rising, which is good news for those workers and consistent with the labor market becoming tighter. With the unemployment rate reasonably low, employers might have to worry a bit more about retaining and attracting part-time staff than they did a few years ago.

September 30, 2016 in Employment, Labor Markets, Wage Growth | Permalink

Comments

I'm less interested in why a wage increase gap exists between pt and ft workers. The common sense answer would seem to be that pt workers are simply worth less and therefore would get smaller increases in addition to overall lower pay.

The more interesting item to me from the graph are the spikes in the pt wage increases. Particularly the spike that continued into the early 90s recession. Is spiking pt wage growth a sign of full employment?

Posted by: Rob | October 01, 2016 at 07:37 AM

Could you display real wage growth, instead of nominal ? The downward slope of the graph is probably caused by falling inflation, and removing it would make it clear to see recession patterns.

Posted by: Felipe | October 04, 2016 at 05:39 PM

Post a comment

Comments are moderated and will not appear until the moderator has approved them.

If you have a TypeKey or TypePad account, please Sign in

September 27, 2016


Back to the '80s, Courtesy of the Wage Growth Tracker

Things have been a wee bit quiet in macroblog land the last few weeks, chiefly because our time has been devoted to two exciting new projects. The first is a refresh of our labor force dynamics website, which will feature a nifty tool for looking at the main reasons behind changes in labor force participation for different age groups. More on that later.

The other project has been adding more history to our Wage Growth Tracker. The tracker's current time series starts in 1997. The chart below shows an extended version of the tracker that starts in 1983.

Nominal-wage-growth-tracker

Recall that the Wage Growth Tracker depicts the median of the distribution of 12-month changes of matched nominal hourly earnings. In the extended time series, you'll notice two gaps, which resulted from the U.S. Census Bureau scrambling the identifiers in its Current Population Survey. For those two periods, you'll have to use your imagination and make some inferences.

As we have emphasized previously, the Wage Growth Tracker is not a direct measure of the typical change in overall wage costs because it only looks at (more or less) continuously employed workers. But it should reflect the amount of excess slack in the labor market. This point is illustrated in the following chart, which compares the Wage Growth Tracker with the unemployment gap computed from the Congressional Budget Office's (CBO) estimate of the long-run natural rate of unemployment.

  02-nominal-wage-growth-and-excess-labor-market-slack


As the chart shows, our measure of nominal wage growth has historically tracked the cyclical movement in the unemployment rate gap estimate fairly well, at least since the mid-1980s. We think this feature is potentially important, because the true unemployment rate gap is very hard to know in real time and hence is subject to potentially large revision. For example, in real time, the unemployment rate was estimated to have fallen below the natural rate in the fourth quarter of 1994, but it is now thought to have not breached the natural rate until the first quarter of 1997—more than two years later. The Wage Growth Tracker is not subject to revision (although it is subject to a small amount of sampling uncertainty) and hence could be useful in evaluating the reliability of the unemployment rate gap estimate in real time.

This also is important from a monetary policy perspective if we are worried about the risk of the economy overheating. For example, President Rosengren of the Boston Fed described why he dissented at the most recent Federal Open Market Committee meeting in favor of a quarter-point increase in the target range for the federal funds rate. His dissent, he said, arose partly from his concern that the economy may overheat and drive unemployment below a level he believes is sustainable.

Currently, the CBO estimate of the unemployment rate gap looks like it is plateauing at close to zero. The fact that the Wage Growth Tracker for the third quarter slowed a bit is consistent with that. But it's only one quarter of data, and so we'll closely monitor the Wage Growth Tracker in the coming months to see what it suggests about the actual unemployment rate gap. We'll discuss what observations we make here.

September 27, 2016 in Employment, Labor Markets, Wage Growth | Permalink

Comments

Got a question... one of the things that I've been thinking about is the likelihood of a sustained period of time where we are at or near "full employment" due to demographic shifts diminishing the labor supply. Based on the chart above, it looks like wage growth continues unabated until employment starts dropping again. What do you think?

Posted by: Brian Reed | October 26, 2016 at 08:35 AM

Post a comment

Comments are moderated and will not appear until the moderator has approved them.

If you have a TypeKey or TypePad account, please Sign in

Google Search



Recent Posts


October 2017


Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31        

Archives


Categories


Powered by TypePad