Appendix: Method for Assigning Shaded Regions in the Graph

Without loss of generality, the method is described using the six-month growth rate of manufacturing industrial production. To use a three-month growth rate, one could do a “find and replace” substituting “400” for “200,” “1qtr” for “2qtr,” etc.

Step 1: Let $g_{q}^{GDP-2qtr}$ denote the two-quarter logarithmic growth rate (SAAR) of real GDP in quarter q. Using the 1990q1 – 2014q1 sample, calculate the mean and standard deviation of $g_{q}^{GDP-2qtr}$ and denote them by $\bar{g}^{GDP-2qtr}$ and $σ^{GDP-2qtr}$, respectively. Standardize the growth rates as z-scores:

\[
(1) z_{q}^{GDP-2qtr} = \frac{g_{q}^{GDP-2qtr} - \bar{g}^{GDP-2qtr}}{σ^{GDP-2qtr}}
\]

The GDP growth rate thresholds for the shading is the ordered set { -1.5, 0.0, 1.5, 2.5, 3.5}. For example, the second element is 0.0. Denote the ith threshold in the set (1 ≤ i ≤ 5) as $t_{pct,i}^{GDP-2qtr}$. Convert it to a logarithmic growth rate:

\[
(2) t_{log,i}^{GDP-2qtr} = 100\log(1 + \frac{t_{pct,i}^{GDP-2qtr}}{100})
\]

For each of the log thresholds, find its z-score equivalent with equation (1):

\[
(3) z_{i}^{GDP-2qtr} = \frac{t_{log,i}^{GDP-2qtr} - \bar{g}^{GDP-2qtr}}{σ^{GDP-2qtr}}
\]

Step 2: Let $g_{m}^{IPMan-6mth} = 200\log(\frac{IPMan_{m}}{IPMan_{m-6}})$ denote the six-month logarithmic growth rate (SAAR) of manufacturing IP in month m. Using the February 1990–February 2014 sample (chosen to line up with the GDP sample), calculate the mean and standard deviation of $g_{m}^{IPMan-6mth}$ and denote them by $\bar{g}^{IPMan-6mth}$ and $σ^{IPMan-6mth}$, respectively. Standardize the six-month logarithmic growth rates as:

\[
(4) z_{m}^{IPMan-6mth} = \frac{g_{m}^{IPMan-6mth} - \bar{g}^{IPMan-6mth}}{σ^{IPMan-6mth}}
\]

Solve for the thresholds for the 6-month logarithmic growth rate of manufacturing IP that are equivalent—in z-score units—to the log GDP growth thresholds in equation (2)

\[
(5) t_{log,i}^{IPMan-6mth} = \bar{g}^{IPMan-6mth} + σ^{IPMan-6mth} t_{z,i}^{GDP-2qtr}
\]

Convert these thresholds from log growth rates to percentage growth rates by

\[
(6) t_{pct,i}^{IPMan-6mth} = 100[\exp(\frac{t_{log,i}^{IPMan-6mth}}{100}) - 1]
\]

The collection of thresholds \{ $t_{pct,i}^{IPMan-6mth}$\}_{i=2}^{5} are the boundaries of the shaded regions in the charts. The value $t_{pct,1}^{IPMan-6mth}$ is the truncation threshold; growth rates below this are reassigned this truncation threshold value in the graph. This is done to focus the eye on expansionary periods.